Modular Version of The Total Vertex Irregularity Strength for The Generalized Petersen Graph

Authors

  • Dina Universitas Riau
  • Susilawati Universitas Riau

DOI:

https://doi.org/10.14421/fourier.2025.141.1-8

Keywords:

Generalized Petersen graph, total vertex irregularity strength, total vertex irregular labeling, modular total vertex irregular labeling

Abstract

Let  be a graph. A labeling graph is a maps function of the set of vertices and/or edges of , to the set of positive integers. A total modular labeling is said to be a -modular total irregular labeling of the vertices of , if for every two distinct vertices  and  in , the modular weights are different, and belong to the set of integers . The minimum  such that the graph  has a - modular total irregular labeling is called the modular total vertex irregularity strength and denoted by . In this paper, we study about the modular total vertex irregularity strength for the generalized Petersen graph . The result show that the exact value is .

Downloads

Download data is not yet available.

References

G. Chartrand, M. S. Jacobon, J. Lehel, O. R. Oellerman, S. Ruiz, and F. Saba. "Irregular Networks", Congr. Numer, 64, pp. 187-192, 1988.

K. M. M. Haque. "Irregular total labelings of generalized Petersen graphs", Theory of computing systems, 50, pp. 537-544, 2012. Doi: 10.1007/s00224-011-9350-7.

A. Ahmad, M. K. Siddiqui, M. Ibrahim, and M. Asif. "On the total irregularity strength of generalized Petersen graph", Math Rep. 18, pp. 197-204, 2016.

D. Indriati, I. E. Wijayanti, and K. A. Sugeng. "On Total Irregularity Strength of Double-Star and Related Graphs", Procedia Computer Science, 74, pp. 118-123, 2015. Doi: 10.1016/j.procs.2015.12.086.

M. Naeem, M and M. K. Siddiqui. "Total irregularity strength of disjoint union of isomorphic copies of generalized Petersen graph", Discrete Mathematics, Algorithms and Applications 9(06), 1750071, 2017. Doi: 10.1142/S1793830917500719.

N. Hinding, E. T. Baskoro, A. N. M. Salman, and N. N. Gaos. "On the total vertex irregularity strength of trees", Discrete mathematics, 310(21), pp. 3043-3048, 2010. Doi: 10.1016/j.disc.2010.06.041.

Susilawati, E. T. Baskoro, and R. Simanjuntak. "Total vertex irregularity strength of trees with maximum degree five", Electronic Journal of Graph Theory & Applications, 6 (2), pp. 250–257, 2018. Doi: 10.5614/ejgta.2018.6.2.5.

M. Bacca, K. Muthugurupackiam, K. M. Kathiresan, and S. Ramdya. "Modular irregularity strength of graphs", Electronic Journal of Graph Theory and Applications, 8(2), pp. 435-443, 2020. Doi: 10.5614/ejgta.2020.8.2.19.

Sugeng, K. A., Barack, Z. Z., Hinding, N., and Simanjuntak, R. "Modular irregular labeling on double-star and friendship graph", Hindawi, Journal of Mathematics, pp. 1-6, 2021. Doi: 10.1155/2021/4746609.

D. Lase, N. Hinding, and A. K. Amir. "Modular irregular labeling on firecrackers graphs", Jurnal Penelitian Matematika dan Pendidikan Matematika. 1 (6), pp. 94-102, 2023. Doi: 10.30605/proximal.v5i2.2188.

D. M. Lett. "Modular irregularity strength of the corona product of graphs", Discrete Math, 13, pp. 111-116, 2024. Doi: 10.47443/dml.2024.041.

A. N. A. Koam, A. Ahmad, M. Baca, and S. F. Andrea. "Modular edge irregularity strength of graphs", AIMS Mathematics, 8(1), pp. 1475-1487, 2024. Doi: 10.3934/math.2023074.

Susilawati, E. T. Baskoro, Rinovia Simanjuntak. "Total Vertex Irregularity Strength of Trees with Maximum Degree Four". AIP. Conference Proceedings, 1707 (1)

Susilawati, E.T. Baskoro, Rinovia Simanjuntak, "On the Vertex Total Labeling for Subdivision of Trees". Australasian Journal of Combinatorics, 71 (2), 293-302.

Susilawati, E. T. Baskoro, Rinovia Simanjuntak. "Total Vertex Irregularity Strength of Trees with Maximum Degree Four". AIP. Conference Proceedings, 1707 (1).

D. A. Holton, and J. Sheehan. The Petersen Graph (Vol. 7). New Zealand: Cambridge University Press, 1993.

Susilawati, E.T. Baskoro, Rinovia Simanjuntak, J. Ryan. "Total Vertex Irregularity Strength of Trees with Many Vertices of Degree Two", Electron. J. Graph Theory Appl. 8 (2), 415-421.

Downloads

Published

2025-04-30

How to Cite

Nasution, D. K. ., & Susilawati. (2025). Modular Version of The Total Vertex Irregularity Strength for The Generalized Petersen Graph. Jurnal Fourier, 14(1), 1–8. https://doi.org/10.14421/fourier.2025.141.1-8

Issue

Section

Articles