Luas Permukaan Selimut Tabung dan Bola Terpotong

Authors

  • Burhanuddin Latif Universitas Islam Negeri Sunan Kalijaga Yogyakarta

DOI:

https://doi.org/10.14421/fourier.2022.111.17-21

Keywords:

Bola, Tabung, Bola Terpotong, Selimut Tabung, Luas Permukaan, Sphere, Cylinder, Hemisphere, Circumscribing Cylinder, Surface Area

Abstract

Pada artikel ini ditunjukkan bahwa suatu bola dengan radius  dan suatu tabung dengan radius alas  dan tinggi , pada saat bola dan tabung tersebut secara bersama - sama dipotong oleh sebuah bidang horizontal yang paralel dengan , maka luas permukaan bola terpotong dan luas permukaan selimut tabung yang berada pada  memiliki nilai yang sama. Begitu pula luas permukaan bola terpotong dan luas permukaan selimut tabung yang berada pada  memiliki nilai yang juga sama. Pada saat bola dan tabung tersebut secara bersama - sama dipotong oleh dua buah bidang horizontal  dan  dengan  yang paralel dengan  maka luas permukaan bola terpotong dan luas permukaan selimut tabung yang berada pada  memiliki nilai yang juga sama. Sehingga bagaimanapun suatu luas permukaan bola dan luas selimut tabung dengan ukuran tersebut bersama - sama dipotong secara horizontal akan memperoleh nilai yang sama yaitu sebesar

 

In this article it is shown that a sphere with radius  and a cylinder with a radius  and height , since the sphere and cylinder were cut together by a horizontal plane  which is parallel to , then the surface area of the hemisphere and the surface area of the circumscribing cylinder at  have the same value. Likewise, the surface area of the hemisphere and the surface area of the circumscribing cylinder at  have the same value. When the sphere and cylinder are simultaneously cut by two horizontal planes  and  with  which are parallel to , the surface area of the hemisphere and the surface area of the circumscribing cylinder is at  m have the same value. So that somehow the surface area of the hemisphere and the circumscribing cylinder with those sizes simultaneously are cut horizontally and will get the same value, which is equal to .

Downloads

Download data is not yet available.

References

E. Kreyszig, Advanced Engineering Mathematics. New York: John Wiley & Sons, 2011.

T. L. Heath, The Works of Archimedes, Edited in Modern Notation with Introductory Chapters. Cambridge: Cambridge University Press, 1897.

K. Saito and P. D. Napolitani, “Reading the Lost Folia of the Archimedean Palimpsest: The Last Proposition of the Method,” in From Alexandria, Through Baghdad, Berlin, Heidelberg: Springer, 2014, pp. 199–225.

E. Ladyawati, “Mengkonstruksi Luas Selimut Bola,” Didaktis: Jurnal Pendidikan dan Ilmu Pengetahuan, vol. 16, no. 3, 2016.

D. Triwahyuningtyas and I. K. Suastika, “Teaching ‘surface area of a sphere and volume of a ball’ using an inquiry approach,” J Phys Conf Ser, vol. 1402, no. 7, p. 077103, Dec. 2019, doi: 10.1088/1742-6596/1402/7/077103.

D. Pengelley, “Sums of numerical powers in discrete mathematics: Archimedes sums squares in the sand.” Mathematical Association of America, 2008.

P. Roy, “Approximate Measurements of The Surface Area of Sphere,” International Research Journal of Modernization in Engineering Technology and Science, vol. 3, no. 10, pp. 211–221, Oct. 2021.

T. M. Apostol, Calculus, Volume II. New York: John Wiley & Sons, 1969.

P. J. Olver, “Vector Calculus in Three Dimensions.” University of Minnesota, 2013.

A. Bowers, J. Bunn, and M. Kim, “Efficient Methods to Calculate Partial Sphere Surface Areas for a Higher Resolution Finite Volume Method for Diffusion-Reaction Systems in Biological Modeling,” Mathematical and Computational Applications, vol. 25, no. 1, p. 2, Dec. 2019, doi: 10.3390/mca25010002.

R. Fitzpatrick, “Euclid’s Elements of Geometry, The Greek text of J.L. Heiberg,” https://farside.ph.utexas.edu/Books/Euclid/Elements.pdf, May 22, 2022.

W. Fleming, Functions of Several Variables, 2nd ed. Berlin: Springer, 1928.

R. A. Adams, Calculus, A Complete Course. Ontario: Pearson Education Canada, 2010.

J. Marsden and A. Weinstein, Calculus III. New York: Springer, 1985.

G. J. Tee, Surface Area of Ellipsoid Segment. New Zealand: Department of Mathematics, The University of Auckland, 2005.

Downloads

Published

2022-04-30

How to Cite

Latif, B. (2022). Luas Permukaan Selimut Tabung dan Bola Terpotong. Jurnal Fourier, 11(1), 17–21. https://doi.org/10.14421/fourier.2022.111.17-21

Issue

Section

Articles