A Mathematical Model of Microplastic Spreading into Fish Digestive Based On Abiotic Factor


  • Zani Anjani Rafsanjani HSM Universitas Ahmad Dahlan
  • Nurul Suwartiningsih Universitas Ahmad Dahlan
  • Ichsan I Luqmana Universitas Ahmad Dahlan


differential equation, mathematical model, microplastic


In this research, we observe the fish from seven different river location on Yogyakarta by evaluating its digestive weight. We investigate the microplastics spreading on fish digestive based on the abiotic factor such as river temperature, acidity, and river flow microplastics granules to be carried into the digestive tract of the fish. The rate of microplastics in the fish body can be describe mathematically using differential equation. We build a model based on the diagram flow of the relationship between each variables. Thus we have a differential system as the model. In the next step we analyze the model analytically. To show the accurancy of the model, we make a simulation using data simulation to the system and we compare it with the computing results using observation data. At the end of our research, we give a justification for the most influential abiotic factor for microplastic sreading.


Download data is not yet available.

Author Biographies

Zani Anjani Rafsanjani HSM, Universitas Ahmad Dahlan

Program Studi Matematika

Nurul Suwartiningsih, Universitas Ahmad Dahlan

Program Studi Biologi

Ichsan I Luqmana, Universitas Ahmad Dahlan

Program Studi Biologi


[1] Tanaka, K., & Takada, H. 2016. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Scientific Reports, 34351(6), 1-8.
[2] Suwartiningsih, N., Setyowati, & Astuti, R. 2020. Microplastic in Pelagic and Demersal Fishes of Pantai Baron, Yogyakarta, Indonesia. Jurnal Biodjati. 1(2). 33-49.
[3] Steer, M., et.al. 2017. Microplastic Ingestion in Fish Larvae in The Western English Channel. Environmental Pollution. 1(10).
[4] Murphy, F., et.al. 2017. The Uptake of Macroplastic & Microplastic by demersal & pelagic fish in the Northeast Atlantic around Scotland. Marine Pollution Bulletin. -. 1-7.
[5] Munno, K., et.al. 2017. Impact of Temperature and Selected Chemical Digestion Methods on Microplastic Particles. Environmental Toxicology and Chemistry.-
[6] Uchitane, T, Ton, T & Yagi, A. 2012. An Ordinary Differential Equation Model for Fish Schooling. Science Mathematicaer Japanicae. 75(3). 339-350.
[7] Gautrais, J., et.al. 2008. Analyzing Fish Movement as a Persistent Turning Walker. Journal Mathematical Biology. 58. 429-445.
[8] Muller, M., Osse, J., & Verhagen, J.H. 1981. A Quantitative Hydrodynamical Model of Suction Feeding in Fish. Journal Theory Biologi. 95. 49-79.



How to Cite

HSM, Z. A. R., Suwartiningsih, N., & Luqmana, I. I. (2021). A Mathematical Model of Microplastic Spreading into Fish Digestive Based On Abiotic Factor. Jurnal Fourier, 10(2). Retrieved from https://fourier.or.id/index.php/FOURIER/article/view/132