Grup Multiplikatif 2U_n

Authors

  • Mahmudi Mahmudi Universitas Syiah Kuala
  • Malahayati Malahayati UIN Sunan Kalijaga

DOI:

https://doi.org/10.14421/fourier.2019.82.51-55

Keywords:

aturan kanselasi, grup multiplikatif, grup siklik, isomorfisma grup

Abstract

Artikel ini membahas bukti grup multiplikatif 2Un menggunakan aturan kanselasi. Lebih jauh, juga dibuktikan bahwa grup tersebut merupakan grup siklik menggunakan hubungan isomorfisma grup dengan grup Un.

[In this article, we prove the multiplicative group 2Un using the cancellation law. Futhermore, we also prove that 2Un is a cyclic group using an isomorphism property.]

Downloads

Download data is not yet available.

Author Biographies

Mahmudi Mahmudi, Universitas Syiah Kuala

Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Malahayati Malahayati, UIN Sunan Kalijaga

Program Studi Matematika Fakultas Sains dan Teknologi

References

J. A. Gallian, Contemporary Abstract Algebra, 9th ed. Boston: Cengage Learning, 2017.
L. Gilbert and J. Gilbert, Elements of Modern Algebra., 8th ed. Stamford: Cengage Learning, 2015.
B. Green, “A Project for Discovery, Extension, and Generalization in Abstract Algebra,” Coll. Math. J., vol. 31, no. 4, pp. 329–332, 2000.
T. W. Judson and R. A. Beezer, Abstract Algebra, Theory and Applications. pretextbook.org, 2019.
Shariar Shariari, Algebra in Action, A Course in Groups, Rings, and Fields. Providence, Rhode Island: American Mathematical Society, 2017.
R. I. Berger, “Hidden Group Structure,” Math. Assoc. Am., vol. 78, no. 1, pp. 45–48, 2005.

Downloads

Published

2019-10-31

How to Cite

Mahmudi, M., & Malahayati, M. (2019). Grup Multiplikatif 2U_n. Jurnal Fourier, 8(2), 51–55. https://doi.org/10.14421/fourier.2019.82.51-55

Issue

Section

Articles