Operator Linear-2 Terbatas pada Ruang Bernorma-2 Non-Archimedean
DOI:
https://doi.org/10.14421/fourier.2019.82.43-50Keywords:
norma, ruang operator, terbatas, linear-2, bernorma-2 non-ArchimedeanAbstract
Di dalam paper ini dikonstruksikan operator linear-2 terbatas dari X2 ke Y , dengan X ruang bernorma-2 non-Archimedean dan ruang bernorma non-Archimedean. Di dalam paper ini ditunjukan bahwa himpunan semua operator linear-2 terbatas dari X2 to Y , ditulis B(X2, Y) merupakan ruang bernorma non-Archimedean. Selanjutnya, ditunjukan bahwa B(X2, Y), apabila Y ruang Banach non-Archimedean.
[In this paper we construct bounded 2-linear operators from X2 to Y, where X is non-Archimedean 2-normed spaces and is a non-Archimedean-normed space. We prove that the set of all bounded 2-linear operators from X2 to Y , denoted by B(X2, Y) is a non-Archimedean normed spaces. Furthermore, we show that B(X2, Y) is a non-Archimedean Banach normed space, whenever Y is a non-Archimedean Banach space.]
Downloads
References
H. Gunawan and Mashadi. 2001. On n-Normed Spaces. Int. J. Math. Sci., 27: 631-639.
S.M. Gozali, H. Gunawan, and O. Neswan. 2010. On n-Norms and Bounded n-Linear Functionals in a Hilbert Spaces. Ann. Funct. Anali. 1: 72-79.
Agus L. Soenjaya. 2012. On n-Bounded and n-Continuous Operator in n-Normed Spaces. J. Indones. Math. Soc. Vol. 18, No. 1: 45-56.
Hahng-Yun Chu, Se-Hyun Ku, and Dong Seung Kang. 2008. Characterizations on 2-Isometries. Journal math. Anal. Appl. 340:641-628.
R. W. Freese, Y. J. Cho. 2001. Geometry of Linear 2-Normed Spaces. Hauppauge, New-York, Nova Science Publisher Inc.
A. F. Monna. 1943. Linear Functional Equations in Non-Archimedean Banach Spaces. Nederl. Akad. Wetensch. Verslagen. Afd. Natuurkunde, 52: 654-661.
C. Perez-Garcia and W. H. Schikhof. 2010. Locally Convex Spaces Over Non-Archimedean Valued Fields. Cambridge, Cambridge University Press.
Toka Diagana. 2009. Non-Archimedean Linear Operators and Applications. New York, Nova Science Publisher Inc.
M. Amyari and Gh. Sadeghi. 2009. Mapping on Non-Archimedean Strictly 2-Convex 2-Normed Spaces. The ?18?^th Seminar on Mathematical Analysis and its Applications, Tarbiat Moallem University: 57-60.
Jaeyoo Choy and Se-Hyun Ku. 2009. Characterization on 2-isometries in Non-Archimedean 2-Normed Spaces. Journal of The Chungcheong Mathematical Society, Vol 22, No. 1: 65-71.
Hahng-Yun Chu and Se-Hyun Ku. 2013. A Mazur-Ulam Theorem problem in non-Archimedean n-Normed Spaces. Jounal of Inequalities and Applications, 2013, 34: 1-10.
A.C.M. Rooij. 1978. Non-Archimedean Functional Analysus. New York and Besel, Marcel Dekker Inc.