Karakteristik Subsemiring *Fuzzy*

Saman Abdurrahman

Program Studi Matematika FMIPA Universitas Lambung Mangkurat, Jl. A. Yani Km 36 Banjarbaru Kalimantan Selatan 70714, Indonesia.

Korespondensi; Saman Abdurrahman, Email: saman@ulm.ac.id

Abstrak

Dalam tulisan ini, didefinisikan subsemiring fuzzy dan menyelidiki sifat yang terkait. Selain itu, diperkenalkan konsep subsemiring yang diinduksi dari level subset. Akhirnya, karakteristik subsemiring fuzzy diperoleh.

Kata Kunci: Semiring; subsemiring; subset *fuzzy*; level subset, subsemiring *fuzzy*.

Abstract

In this paper, we define the notion of fuzzy subsemiring and investigate the related properties. Moreover, we introduce the idea of a subsemiring induced from the level subset. Finally, a characterization of a fuzzy subsemiring is obtained.

Keywords: Semiring; subsemiring; fuzzy subset; level subset; fuzzy subsemiring.

Pendahuluan

Konsep subgrup *fuzzy* pertama kali diperkenalkan oleh Rosenfeld [1]. Konsep ini, merupakan perpaduan antara konsep teori grup dan himpunan *fuzzy* yang diperkenalkan oleh Zadeh [2]. Konsep subgrup *fuzzy*, merupakan konsep dasar dari aljabar *fuzzy* yang dijadikan oleh peneliti selanjutnya sebagai pondasi dalam membangun dan menyelidiki sifat dari struktur aljabar *fuzzy* lainnya, diantaranya: interior semiring *fuzzy* diperkenalkan oleh Mandal [3]; dan konsep interior subgrup fuzzy yang dikaitkan dengan homomorfisma grup diperkenalkan oleh Abdurrahman [4]; dan konsep ideal fuzzy pada gamma near-ring diperkenalkan oleh Jun at al [5].

Pada tulisan ini, akan menyelidiki sifat-sifat dasar dari subsemiring fuzzy yang dibangun oleh level subset ataupun subset dari semiring yang dikaitan dengan nilai keanggotaan elemen nol pada operasi pertama. Sifat-sifat subsemiring fuzzy yang diselidiki, diinduksi dari penelitian Abdurrahman [6] dan lun at al [5].

Landasan Teori

Semiring merupakan salah satu perluasan dari ring. Menurut Ahsan at al [7], suatu himpunan $S(\neq \emptyset)$ dikatakan membentuk semiring, jika pada S didefinisikan dua operasi biner penjumlahan (+) dan perkalian (·) sedemikian sehingga (S, +) adalah semigrup abelian, dan (S, \cdot) adalah semigrup (tidak harus komutatif), serta dipenuhi sifat distributif kiri dan kanan, yaitu:

$$b(a+c) = ba + bc$$
, dan $(b+c)a = ba + ca$.

untuk setiap $a, b, c \in S$. Jika semigrup (S, \cdot) memuat elemen identitas 0, maka elemen identitas ini disebut elemen nol pada semiring $(S, +, \cdot)$ sedemikian sehingga untuk setiap $c \in S$ berlaku:

$$c + 0 = 0 + c = c \operatorname{dan} c \cdot 0 = 0 \cdot c = 0.$$

Seperti pada ring terdapat subring, pada semiring juga terdapat subsemiring seperti yang didefinisikan oleh Jagatap [8]. Subset $K(\neq \emptyset)$ dari semiring S disebut subsemiring dari S, jika

$$b+c \in K$$
 dan $bc \in K$

untuk setiap $b, c \in S$.

Definisi 2.1 [9] Subset fuzzy ρ dari himpunan tidak kosong S adalah fungsi dari S ke interval tutup [0,1].

Definisi 2.2 [9] *Misalkan* ρ *adalah subset fuzzy dari S dan* $\alpha \in [0,1]$ *sedemikian sehingga* $\rho_{\alpha} \stackrel{\text{def}}{=} \{x \in S | \rho(x) \geq \alpha\}.$

Himpunan ρ_a disebut level subset dari ρ .

Definisi 2.3 [7] Subset fuzzy ρ dari semiring S disebut subsemiring fuzzy dari S jika untuk setiap $a,b \in S$ berlaku

$$\rho(a+b) \ge \rho(a) \land \rho(b)$$
 dan $\rho(ab) \ge \rho(a) \land \rho(b)$.

Hasil dan Pembahasan

Teorema 3.1 Misalkan S adalah semiring yang memuat elemen O dan ρ adalah subsemiring fuzzy dari semiring S. Jika $\rho(0) \ge \rho(w)$ untuk setiap $w \in S$, maka himpunan

$$S_{\rho} \stackrel{\text{def}}{=} \{ z \in S \mid \rho(z) = \rho(0) \}$$

adalah subsemiring dari S.

Bukti:

Misalkan S adalah semiring yang memuat elemen 0 dan ρ adalah subsemiring fuzzy dari semiring S_ρ maka berdasarkan definisi S_ρ , diperoleh $S_\rho \subseteq S$ dan $\rho(0) = \rho(0)$, sehingga $0 \in S_\rho$, yaitu $S_\rho \neq \emptyset$. Selanjutnya, diambil sembarang $x, w \in S_\rho$, maka $\rho(x) = \rho(0)$ dan $\rho(w) = \rho(0)$. Akibatnya, berdasarkan Definisi 2.3 diperoleh

$$\rho(x+w) \ge \rho(x) \land \rho(w) = \rho(0) \text{ dan } \rho(ab) \ge \rho(a) \land \rho(b) = \rho(0).$$

Oleh karena itu,

$$x + w \in S_{\rho}$$
 dan $xw \in S_{\rho}$.

Dengan kata lain, S_{ρ} adalah subsemiring dari S.

Teorema 3.2 Misalkan R adalah subset tidak kosong dari semiring S dan ρ_R subset fuzzy dari S yang didefinisikan dengan

$$\rho_R(x) = \begin{cases} \alpha, & x \in R \\ b, & x \in S \backslash R \end{cases}$$

untuk setiap $x \in S$ dan $\alpha, c \in [0,1]$ dengan $\alpha > b$, maka ρ_R adalah subsemiring fuzzy dari S jika dan hanya jika R adalah subsemiring dari S.

Bukti:

(⇒) Diambil sembarang $x, w \in R$, maka $\rho_R(x) = a$ dan $\rho_R(w) = a$. Karena ρ_R adalah subsemiring fuzzy dari S dan $R \subseteq S$, diperoleh

$$\rho_R(x+w) \ge \rho_R(x) \wedge \rho_R(w) = a \operatorname{dan} \rho_R(xw) \ge \rho_R(x) \wedge \rho_R(w) = a.$$

Oleh karena itu, $x + w \in R$ dan $xw \in R$. Dengan kata lain R adalah subsemiring dari S.

(\Leftarrow) Misalkan R adalah subsemiring dari S dan ρ_R subset *fuzzy* dari S. Diambil sembarang $x, w \in S$, maka dapat ditinjau untuk beberapa kasus, yaitu:

1) $x, w \in S \setminus R$, maka $\rho_R(x) = b$ dan $\rho_R(w) = b$, yang mengakibatkan

$$\rho_R(x+w) \ge b = \rho_R(x) \land \rho_R(w) \text{ dan } \rho_R(xw) \ge b = \rho_R(x) \land \rho_R(w).$$

2) $x \in R$ dan $w \in S \setminus R$, maka $\rho(x) = a$ dan $\rho(w) = b$, yang mengakibatkan

$$\rho_R(x+w) \ge b = \rho_R(x) \land \rho_R(w) \text{ dan } \rho_R(xw) \ge b = \rho_R(x) \land \rho_R(w).$$

3) $x, w \in R$, maka $x + w \in R$ dan $xw \in R$, sehingga $\rho_R(x) = a$, $\rho_R(w) = a$, $\rho_R(x + w) = a$ dan $\rho_R(xw) = a$, yang mengakibatkan

$$\rho_R(x+w) = a = \rho_R(x) \wedge \rho_R(w)$$
 dan $\rho_R(xw) = a = \rho_R(x) \wedge \rho_R(w)$.

Berdasarkan hasil analisa di atas, untuk setiap $x, w \in S$ berlaku

$$\rho_R(x+w) \ge \rho(x) \wedge \rho(w) \text{ dan } \rho_R(xw) \ge \rho(x) \wedge \rho(w).$$

Dengan kata lain, ρ_R adalah subsemiring fuzzy dari S.

Akibat 3.3 Misalkan $R(\neq \emptyset)$ adalah subset dari semiring R dan χ_R adalah fungsi karakteristik dari R, maka χ_R adalah subsemiring fuzzy dari S jika dan hanya jika R adalah subsemiring dari S.

Teorema 3.4 Subset fuzzy ρ dari semiring S adalah subsemiring fuzzy dari S jika dan hanya level subset $\rho_{\alpha}(\neq \emptyset)$ adalah subsemiring dari S, untuk setiap $\alpha \in \rho(S)$.

Bukti:

(⇒) Misalkan ρ adalah subsemiring *fuzzy* dari semiring S. Akan dibuktikan subset tidak kosong ρ_a dari S adalah subsemiring dari S, untuk setiap $a \in \rho(S)$. Diambil sembarang $x, z \in \rho_a$, maka $\rho(x) \ge a$ dan $\rho(z) \ge a$. Karena ρ adalah subsemiring *fuzzy* dari S dan ρ_a subset dari S, maka $x, z \in S$, sehingga berdasarkan Definisi 6, diperoleh kondisi berikut ini.

$$\rho(x+z) \ge \rho(x) \land \rho(z) \ge a \text{ dan } \rho(xz) \ge \rho(x) \land \rho(z) \ge a.$$

Oleh karena itu,

$$x + z \in \rho_a$$
 dan $xz \in \rho_a$.

Berdasarkan hasil Analisa di atas, ρ_a adalah subsemiring dari S untuk setiap $a \in \rho(S)$.

(\Leftarrow) Misalkan ρ_a adalah subsemiring dari S, untuk setiap $a \in \rho(S)$ dan ρ subset fuzzy dari S. Akan dibuktikan ρ adalah subsemiring fuzzy dari S. Diambil sembarang $z,w \in S$, maka ada $a,c \in \rho(S)$ sedemikian sehingga $\rho(z) = a$ dan $\rho(w) = c$. Misalkan $d = a \land c$, maka $\rho(z) \ge d$ dan $\rho(w) \ge d$, yang mengakibatkan $z,w \in \rho_d$. Mengingat untuk setiap $a \in \rho(S)$, ρ_a adalah subsemiring dari S, maka diperoleh kondisi $z + w \in \rho_d$ dan $zw \in \rho_d$. Oleh karena itu,

$$\rho(z+w) \ge d = a \land c = \rho(z) \land \rho(w) \text{ dan } \rho(zw) \ge d = a \land c = \rho(z) \land \rho(w).$$

Dengan kata lain, ρ adalah subsemiring fuzzy dari S.

Teorema 3.5 Misalkan R adalah subsemiring dari semiring S, maka untuk setiap $\alpha \in (0,1)$, terdapat subsemiring fuzzy ρ dari S sedemikian sehingga $\rho_{\alpha} = R$.

Bukti:

Misalkan $\rho: S \to [0,1]$ adalah subsemiring fuzzy dari S yang didefinisikan oleh

$$\rho(x) = \begin{cases} a, & x \in R \\ 0, & x \in S \setminus R \end{cases}$$

dengan $a \in (0,1)$. Oleh karena itu, berdasarkan fungsi keanggotaan ρ diperoleh:

$$\rho_a = \{x \in S \mid \rho(x) \ge a\} = \{x \in S \mid x \in R\} = R.$$

Selanjutnya, andaikan ada $x_0, w_0 \in S$ sedemikian sehingga dipenuhi kondisi

$$\rho(x_0 + w_0) < \rho(x_0) \land \rho(w_0) \text{ dan } \rho(x_0 w_0) < \rho(x_0) \land \rho(w_0).$$

Karena $|\rho(S)| = 2$, maka

$$\rho(x_0 + w_0) = 0 \text{ dan } \rho(x_0) \land \rho(w_0) = a$$

dan

$$\rho(x_0 w_0) = 0$$
 dan $\rho(x_0) \wedge \rho(w_0) = a$

Akibatnya,

$$x_0 + w_0 \notin R$$
 dan $x_0 w_0 \notin R$ tetapi $\rho(x_0) = \rho(w_0) = a$, yaitu $x_0, w_0 \in R$.

Kondisi, $x_0 + w_0 \notin R$ dan $x_0w_0 \notin R$ tetapi $x_0, w_0 \in R$, kontradiksi dengan R adalah subsemiring dari S, sehingga pengandaian salah, seharusnya untuk setiap $x, w \in S$ berlaku:

$$\rho(x + y) \ge \rho(x) \land \rho(w)$$
 dan $\rho(xy) \ge \rho(x) \land \rho(w)$.

Dengan kata lain, ρ adalah subsemiring fuzzy dari S.

Teorema 3.6 Misalkan ρ adalah subsemiring fuzzy dari semiring S, maka

$$\rho(z) = \sup\{a \in [0,1] | z \in \rho_a\}$$

untuk setiap $z \in S$.

Bukti:

Misalkan $c \triangleq \sup\{a \in [0,1] | z \in \rho_a\}$, maka untuk sembarang $\epsilon > 0$, $c - \epsilon < a$ untuk suatu $a \in [0,1]$ sedemikian sehingga $z \in \rho_a$ dan mengakibatkan $c - \epsilon < \rho(z)$. Karena ϵ adalah bilangan positif sembarang, maka dipenuhi kondisi $c \leq \rho(z)$. Selanjutnya, dimisalkan $\rho(z) = d$ maka

$$z \in \rho_d$$
 dan $d \in \{a \in [0,1] | z \in \rho_a\}$.

Oleh karena itu,

$$\rho(z) = d \le \sup\{a \in [0,1] | z \in \rho_a\} = c.$$

Berdasarkan hasil analisa di atas,

$$\rho(z) = \sup\{a \in [0,1] | z \in \rho_a\}.$$

Berikut disajikan konvers dari Teorema 3.6. Misalkan Ω adalah subset tidak kosong dari [0,1]

Teorema 3.7 Misalkan S adalah semiring dan $\{\delta_{\alpha} \mid \alpha \in \Omega\}$ adalah koleksi subsemiring dari S sedemikian sehingga

1) $S = \bigcup_{a \in \Omega} \delta_a$,

2) $\alpha > c$, untuk setiap $\alpha, c \in \Omega$ jika dan hanya jika $\delta_{\alpha} \subset \delta_{c}$

Didefinisikan subset fuzzy ρ dari S, untuk setiap $z \in S$,

$$\rho(w) \stackrel{\text{def}}{=} \sup\{a \in \Omega \mid z \in \delta_a\}$$

maka p adalah subsemiring fuzzy dari S.

Bukti:

Untuk setiap $c \in [0,1]$, akan ditinjau dua kasus berikut

1) $c = \sup\{a \in \Omega \mid a < c\},\$

2) $c \neq \sup\{a \in \Omega \mid a < c\}$.

Untuk kasus (1), dipenuhi kondisi

$$z \in \rho_c \Leftrightarrow z \in \rho_a$$
 untuk setiap $a < c$
 $\Leftrightarrow z \in \bigcap_{a < c} \delta_a$,

Oleh karena itu, $\rho_c = \bigcap_{a < c} \delta_a$ adalah subsemiring dari S.

Untuk kasus (2), terdapat $\epsilon > 0$ sedemikian sehingga

$$(c - \epsilon, c) \cap \Omega = \emptyset.$$

Selanjutnya, diklaim $\rho_c = \bigcup_{a \geq c} \delta_a$. Diambil sembarang $z \in \bigcup_{a \geq c} \delta_a$, maka $z \in \delta_a$ untuk suatu $a \geq c$. Oleh karena itu, $\rho(z) \geq a \geq c$, yang mengakibatkan $z \in \rho_c$, yaitu $\bigcup_{a \geq c} \delta_a \subseteq \rho_c$. Sebaliknya, untuk $z \notin \bigcup_{a \geq c} \delta_a$, maka $z \notin \delta_a$ untuk setiap $a \geq c$, yang mengakibatkan $z \notin \delta_a$ untuk setiap $a > c - \epsilon$. Akibatnya, jika $z \in \delta_a$ maka $a \leq c - \epsilon$, sehingga dipenuhi kondisi $\rho(z) \leq c - \epsilon$ dan $z \notin \rho_c$. Oleh karena itu, $\rho_c = \bigcup_{a \geq c} \delta_a$ adalah subsemiring dari S.

Berdasarkan hasil Analisa di atas, diperoleh ρ_c adalah subsemiring dari S, untuk setiap $c \in [0,1]$. Akibatnya, berdasarkan Teorema 3.4, diperoleh ρ adalah subsemiring fuzzy dari S.

Kesimpulan

Berdasarkan hasil dan pembahasan, diperoleh sifat penting yang menghubungkan antara subsemiring dan subsemiring fuzzy, yaitu subset fuzzy ρ dari semiring S adalah subsemiring fuzzy dari S jika dan hanya level subset $\rho_a(\neq \emptyset)$ adalah subsemiring dari S_c untuk setiap $\alpha \in \rho(S)$.

Referensi

- [1] A. Rosenfeld, 1971, Fuzzy groups, J. Math. Anal. Appl., vol. 35, no. 3, pp. 512517.
- [2] L. A. Zadeh, 1965, Fuzzy Sets, Inf. Control, vol. 8, no. 3, pp. 338353.
- [3] D. Mandal, 2014, Fuzzy Ideals and Fuzzy Interior Ideals in Ordered Semirings, Fuzzy Inf. Eng., vol. 6, pp. 101114.
- [4] S. Abdurrahman, 2019, Image (Pre-image) Homomorfisme Interior Subgrup Fuzzy, vol. 8, no. 1, pp. 1518.
- [5] Y. B. Jun, M. Sapanci, and M. A. zt rk, 1998, Fuzzy ideals in gamma near-rings, Turkish J. Math., vol. 22, no. 4, pp. 449459.
- [6] S. Abdurrahman, Interior Subgrup Fuzzy, J. Fourier, vol. 7, no. 1, pp. 1321, 2018.
 [7] J. Ahsan, J. N. Mordeson, and M. Shabir, 2012, Fuzzy Semirings with Applications to Automata Theory. Springer Berlin Heidelberg New York Dordrecht London.
- [8] R. D. Jagatap, 2014, Right k -Weakly Regular -Semirings, Hindawi Publ. Corp. Algebr., vol. 2014, pp. 1-5.
- [9] J. Mordeson and K. R. Bhutani, 2005, Fuzzy Subsets and Fuzzy Subgroups, in Group, vol. 39, no. X, pp. 139.

THIS PAGE INTENTIONALLY LEFT BLANK