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Abstrak  
 

Turunan fraksional conformable telah dikenalkan dengan menggunakan definisi limit yang mirip dengan turunan klasik. 
Selain mempunyai beberapa kelebihan dibandingkan dengan turunan fraksional lainnya seperti pemenuhan sifat-sifat 
seperti halnya turunan klasik dan kemudahan diselesaikan secara numerik, turunan fraksional conformable juga 
mempunyai kekurangan yaitu memberikan eror yang cukup besar dibandingkan dengan turunan fraksional Riemann-
Liouville dan Caputo. Hasil modifikasi dari turunan fraksional conformable telah dikenalkan untuk menanggulangi 
kekurangan tersebut. Turunan fraksional conformable yang telah dimodifikasi dianggap sebagai hampiran terbaik untuk 
turunan fraksional Riemann-Liouville dan Caputo dalam hal perilaku fisis. Sifat-sifat kekontinuan fungsi yang 
berhubungan dengan turunan fraksional conformable dibahas dalam artikel ini. Hubungan antara turunan fraksional orde 
𝜶 dan kekontinuan suatu fungsi dibuktikan secara rinci. Selain itu, dalam artikel ini diberikan teorema yang mirip dengan 
teorema Rolle dan teorema nilai rata-rata untuk turunan fraksional conformable yang dimodifikasi.  
 

Kata Kunci: kekontinuan, modifikasi, teorema nilai rata-rata, teorema Rolle, turunan fraksional conformable 
 

Abstract   
 

The conformable fractional derivative has been introduced to extend the familiar limit definition of the classical 
derivative. Despite having many advantages compared to other fractional derivatives such as satisfying nice properties 
as classical derivative and easy to solve numerically, it also has disadvantages as it gives large error compared to Riemann-
Liouville and Caputo fractional derivatives. Modified types of conformable derivatives have been proposed to overcome 
the shortcoming. The improved conformal fractional derivatives are declared to be better approximations of Riemann-
Liouville and Caputo derivatives in terms of physical behavior. In this paper, properties concerning continuity of the 
improved conformable fractional derivative are investigated. We prove the relation between 𝜶-differentiable and 
continuity of a function and corresponding interior extremum theorem. We also prove the properties close to Rolle’s 
Theorem and Mean Value Theorem for the improved conformable fractional derivatives. 
 

Keywords: conformable fractional derivative ; continuity; mean value theorem; modified, Rolle's theorem  
 

 
 

 
 

Introduction  

Fractional calculus was introduced many centuries ago, but it is still growing splendidly up to now. It 

can be seen from numerous publications concerning fractional derivatives and integrals and its 

applications to mathematical modelling in many fields. Failla and Zingales in [1] stated that some studies 

have pointed out that fractional operators can successfully portrayed complex long-memory and 

multiscale phenomena in materials that can faintly captured by classical differential calculus. Acioli et 

al. in [2] used fractional derivatives to model the dispersion of pollutants in the planetary boundary layer. 

In epidemics, Shaikh et al. [3] used fractional derivative to model the outbreak of COVID-19 in India, 

while Moya et al. [4] to model tuberculosis with considering the relationship with HIV/AIDS and 
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diabetes. Many other papers such as in [5]–[8] revealed the importance of using fractional derivatives to 

approach the models of the encountered problems.  

Fractional derivatives are defined in various ways and mostly by fractional integrals. Some prominent 

definitions of fractional derivatives such as Riemann-Liouville and Caputo fractional derivatives have 

been investigated extensively for both its properties and applications (see for instance [9]–[13]). As it is 

defined using fractional integrals, Riemann-Liouville and Caputo fractional derivatives satisfy linear 

property as the classical derivative but not product and quotient rules. Those fractional derivatives also 

do not have corresponding Rolle’s theorem and mean value theorem. Khalil et al in [14] introduced a 

new definition of fractional derivative called conformable derivative that employed familiar limit 

definition analogous to the classical derivative. The result of this definition revealed that conformable 

derivative satisfies product and quotient rules. It also has corresponding Rolle’s theorem and mean value 

theorem. Hasanah et al. in [15] modified Fourier transform to handle fractional partial differential 

equations using conformal derivative. However, conformable fractional derivatives have disadvantages 

compared to Riemann-Liouville and Caputo fractional derivatives. Conformable derivative gives a 

different physical meaning as it offers large error compared to Riemann-Liouville and Caputo fractional 

derivatives. 

In 2020, Gao and Chi [16] proposed the improvement on the definition of conformable fractional 

derivative to overcome the shortcoming. The authors introduced some improvements on the conformable 

derivative based on Riemann-Liouville and Caputo fractional derivatives. The result shows that the 

improved conformable derivative is a good approximation to the classical Riemann-Liouville or Caputo 

fractional derivative. In terms of numerical computing, it is considered as easy to compute as it is a local 

derivative. In this paper, the relationship between continuity and 𝛼 differentiable is investigated. We also 

give theorems close to Rolle’s theorem and mean value theorem involving the improved conformable 

fractional derivative. 

 

Preliminaries  

In this section we recall some basic definitions and properties of conformable derivative and the 

improved conformable fractional derivatives. Some fractional derivatives of elementary functions are 

also given and will be used to investigate properties regarding continuity of 𝛼-differentiable functions.   

Definition 1. [14] Given a function 𝑓: [0, ∞) → ℝ. Then the conformable fractional derivative of 𝑓 of 

order 𝛼 is defined by 

(𝑇𝛼𝑓)(𝑡) = lim
𝜀→0

𝑓(𝑡 + 𝜀𝑡1−𝛼) − 𝑓(𝑡)

𝜀
 

for all 𝑡 > 0, 𝛼 ∈ (0,1). 

Khalil et al. [14] showed that the conformable fractional derivative satisfies the continuity of 𝛼-

differentiable functions. The authors also give corresponding Rolle’s theorem and mean value theorem 

for the conformable fractional derivative. 

Two types of fractional derivatives which have been extensively studied up to now are Riemann-

Liouville and Caputo fractional derivatives. Different from the definition of conformable fractional 

derivative, Riemann-Liouville and Caputo fractional derivatives are defined using fractional integrals as 

follows.  

Definition 2. For 𝛼 ∈ [𝑛 − 1, 𝑛), the 𝛼-derivative of 𝑓 is defined as 

(1) Riemann-Liouville 
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( 𝐷𝛼
𝑎

𝑅𝐿 𝑓)(𝑡) =
1

Γ(n − α)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝑥)

(𝑡 − 𝑥)𝛼−𝑛+1

𝑡

𝑎

𝑑𝑥.   

(2) Caputo 

( 𝐷𝛼
𝑎
𝐶 𝑓)(𝑡) =

1

Γ(n − α)
∫

𝑓(𝑛)(𝑥)

(𝑡 − 𝑥)𝛼−𝑛+1

𝑡

𝑎

𝑑𝑥.   

 

Both Riemann-Liouville and Caputo fractional integrals utilized fractional integrals, thus both have 

nonlocal behaviors including historical memory and future independence. However, both types of 

fractional derivatives do not have a corresponding Rolle’s theorem and a mean value theorem. 

Gao and Chi [16] introduced a kind of modified conformable derivative called the improved 

conformable derivative. In this definition, there are two types of modified definitions based on Riemann-

Liouville and Caputo fractional derivatives. The improved Caputo-type conformable fractional derivative 

is given in Definition 3 and the improved Riemann-Liouville-type conformable fractional derivative is 

in Definition 4 as follows. 

Definition 3. [16] Let 𝑓: ℝ → ℝ be a function. The improved Caputo-type conformable fractional 

derivative of 𝑓 of order 𝛼 is defined by 

(1) For 0 ≤ 𝛼 ≤ 1, 

( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑡) = lim

𝜀→0
[(1 − 𝛼)(𝑓(𝑡) − 𝑓(𝑎)) + 𝛼

𝑓(𝑡 + 𝜀(𝑡 − 𝑎)1−𝛼) − 𝑓(𝑡)

𝜀
], 

where −∞ < 𝑎 < 𝑡 < +∞, 𝑎 is a given number. 

(2) For 𝑛 < 𝛼 ≤ 𝑛 + 1, 𝑛 = 1,2, …, 

( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑡) = lim

𝜀→0
[(𝑛 + 1 − 𝛼) (𝑓(𝑛)(𝑡) − 𝑓(𝑛)(𝑎))

+ (𝛼 − 𝑛)
𝑓(𝑛)(𝑡 + 𝜀(𝑡 − 𝑎)𝑛+1−𝛼) − 𝑓(𝑛)(𝑡)

𝜀
], 

where −∞ < 𝑎 < 𝑡 < +∞, 𝑎 is a given number. 

Definition 4. [16] Let 𝑓: ℝ → ℝ be a function. The improved Riemann-Liouville-type conformable 

fractional derivative is defined by 

(1) For 0 ≤ 𝛼 ≤ 1, 

( 𝑇̃𝛼𝑎
𝑅𝐿 𝑓)(𝑡) = lim

𝜀→0
[(1 − 𝛼)𝑓(𝑡) + 𝛼

𝑓(𝑡 + 𝜀(𝑡 − 𝑎)1−𝛼) − 𝑓(𝑡)

𝜀
], 

where −∞ < 𝑎 < 𝑡 < +∞, 𝑎 is a given number. 

(2) For 𝑛 < 𝛼 ≤ 𝑛 + 1, 𝑛 = 1,2, …, 

( 𝑇̃𝛼𝑎
𝑅𝐿 𝑓)(𝑡) = lim

𝜀→0
[(𝑛 + 1 − 𝛼)𝑓(𝑛)(𝑡) + (𝛼 − 𝑛)

𝑓(𝑛)(𝑡 + 𝜀(𝑡 − 𝑎)𝑛+1−𝛼) − 𝑓(𝑛)(𝑡)

𝜀
], 

where −∞ < 𝑎 < 𝑡 < +∞, 𝑎 is a given number. 

From the Definition 3 and Definition 4, if 𝑓 is differentiable at 𝑡 then we can deduce that for 𝛼 ∈
(0,1], 

( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑡) = (1 − 𝛼)(𝑓(𝑡) − 𝑓(𝑎)) + 𝛼(𝑡 − 𝑎)1−𝛼𝑓′(𝑡), 

( 𝑇̃𝛼𝑎
𝑅𝐿 𝑓)(𝑡) = (1 − 𝛼)𝑓(𝑡) + 𝛼(𝑡 − 𝑎)1−𝛼𝑓′(𝑡). 
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While for 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 = 1,2, … and 𝑓 is (𝑛 + 1)-differentiable at 𝑡 then 

( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑡) = (𝑛 + 1 − 𝛼) (𝑓(𝑛)(𝑡) − 𝑓(𝑛)(𝑎)) + (𝛼 − 𝑛)(𝑡 − 𝑎)𝑛+1−𝛼𝑓(𝑛+1)(𝑡). 

Based on the definition, for 𝛼 ∈ (0,1], the improved conformable fractional derivative satisfies the linear 

property as the classical derivative as stated in the following theorem.  

Theorem 5. [16] Let 𝑓, 𝑔: ℝ → ℝ be functions and 0 ≤ 𝛼 ≤ 1. The improved conformable fractional 

derivative satisfies the following. 

(1) 𝑇̃𝛼𝑎
𝐶 (𝑚𝑓 + 𝑛𝑔) = 𝑚 𝑇̃𝛼𝑎

𝐶 𝑓 + 𝑛 𝑇̃𝛼𝑎
𝐶 𝑔 

(2) 𝑇̃𝛼𝑎
𝑅𝐿 (𝑚𝑓 + 𝑛𝑔) = 𝑚 𝑇̃𝛼𝑎

𝑅𝐿 𝑓 + 𝑛 𝑇̃𝛼𝑎
𝑅𝐿 𝑔. 

In the following theorem we give the improved conformable fractional derivative of some elementary 

functions. This result will be used in the continuity properties which will be discussed in the next section. 

Theorem 6. [16] Let 0 ≤ 𝛼 ≤ 1. The improved conformable fractional derivatives of some elementary 

functions are given as follows. 

(1) 𝑇̃𝛼0
𝐶 (𝑡𝑝) = 𝑇̃𝛼0

𝑅𝐿 (𝑡𝑝) = (1 − 𝛼)𝑡𝑝 + 𝛼𝑝𝑡𝑝−𝛼 

(2) 𝑇̃𝛼0
𝐶 (𝜆) = 0, for any constant 𝜆 

(3) 𝑇̃𝛼0
𝑅𝐿 (𝜆) = (1 − 𝛼)𝜆, for any constant 𝜆 

(4) 𝑇̃𝛼0
𝐶 (𝑒𝑡) = (1 − 𝛼)(𝑒𝑡 − 1) + 𝛼𝑡1−𝛼𝑒𝑡 

(5) 𝑇̃𝛼0
𝑅𝐿 (𝑒𝑡) = (1 − 𝛼)𝑒𝑡 + 𝛼𝑡1−𝛼𝑒𝑡 

(6) 𝑇̃𝛼0
𝐶 (sin 𝑡) = 𝑇̃𝛼0

𝑅𝐿 (sin 𝑡) = (1 − 𝛼) sin 𝑡 + 𝛼𝑡1−𝛼 cos 𝑡 

(7) 𝑇̃𝛼0
𝐶 (cos 𝑡) = (1 − 𝛼)(cos 𝑡 − 1) − 𝛼𝑡1−𝛼 sin 𝑡 

(8) 𝑇̃𝛼0
𝑅𝐿 (cos 𝑡) = (1 − 𝛼) cos 𝑡 − 𝛼𝑡1−𝛼 sin 𝑡 

(9) 𝑇̃𝛼0
𝑅𝐿 (𝑒(

1

𝛼
𝑡𝛼)) = 𝑒(

1

𝛼
𝑡𝛼). 

 

Results and Discussions 

Instead of using fractional integrals, the improved conformable fractional derivative employs limit in the 

definition as in the conformable fractional derivative. Khalil et al. [14] provide the relationship between 

𝛼-differentiable functions (in the sense of conformable derivative) and continuous functions. The 

improved conformable fractional derivative inherits this property as stated in the following theorems. 

Theorem 7. Let 0 ≤ 𝛼 ≤ 1. If 𝑓 is an 𝛼-differentiable function in the sense of the improved Caputo-type 

conformable fractional derivative at 𝑡0, then 𝑓 is continuous at 𝑡0. 

Proof. By virtue of Definition 3, we have 

( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑡0) = (1 − 𝛼)(𝑓(𝑡0) − 𝑓(𝑎)) + 𝛼 lim

𝜀→0

𝑓(𝑡0 + 𝜀(𝑡0 − 𝑎)1−𝛼) − 𝑓(𝑡0)

𝜀
. 

If we let ℎ = 𝜀(𝑡0 − 𝑎)1−𝛼, then we get 

lim
ℎ→0

𝑓(𝑡0 + ℎ) − 𝑓(𝑡0) = lim
𝜀→0

𝑓(𝑡0 + 𝜀(𝑡0 − 𝑎)1−𝛼) − 𝑓(𝑡0)

𝜀
. 𝜀 

= lim
𝜀→0

𝑓(𝑡0 + 𝜀(𝑡0 − 𝑎)1−𝛼) − 𝑓(𝑡0)

𝜀
. lim

𝜀→0
𝜀 
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=
1

𝛼
[( 𝑇̃𝛼𝑎

𝐶 𝑓)(𝑡0) + (𝛼 − 1)(𝑓(𝑡0) − 𝑓(𝑎))]. 0 

= 0. 

This implies that lim
ℎ→0

𝑓(𝑡0 + ℎ) = 𝑓(𝑡0). Therefore, 𝑓 is continuous at 𝑡0. 

Using analogous way in the proof of Theorem 7, we can easily obtain the continuity property of the 

improved Riemann-Liouville-type conformable fractional derivative as stated in the Theorem 8. 

Theorem 8. Let 0 ≤ 𝛼 ≤ 1. If 𝑓 is an 𝛼-differentiable function in the sense of the improved Riemann-

Liouville-type conformable fractional derivative at 𝑡0, then 𝑓 is continuous at 𝑡0. 

Proof.  Using Definition 4 and letting ℎ = 𝜀(𝑡0 − 𝑎)1−𝛼, we have 

lim
ℎ→0

𝑓(𝑡0 + ℎ) − 𝑓(𝑡0) =
ε

𝛼
[( 𝑇̃𝛼𝑎

𝑅𝐿 𝑓)(𝑡0) + (𝛼 − 1)𝑓(𝑡0)]. 

Letting 𝜀 goes to 0 will lead to lim
ℎ→0

𝑓(𝑡0 + ℎ) = 𝑓(𝑡0), and hence it is continuous at 𝑡0.  

In the sense of classical derivative there exists a relation between an extremum point of a function and 

its derivative at the point. In this paper, we provide similar property for the improved conformable 

fractional derivative. 

Theorem 9. Let 𝑎 > 0 and 𝑐 be an interior point of the interval [𝑎, 𝑏] at which 𝑓: [𝑎, 𝑏] → ℝ has a relative 

extremum. If 𝛼-derivative of 𝑓 at 𝑐 exists, then ( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑐) = (1 − 𝛼)(𝑓(𝑐) − 𝑓(𝑎)) and ( 𝑇̃𝛼𝑎

𝑅𝐿 𝑓)(𝑐) =
(1 − 𝛼)𝑓(𝑐). 

Proof. Assume that 𝑓 has a relative maximum at 𝑐. The case of 𝑓(𝑐) is a relative minimum value is 

proven in similar way. Suppose that ( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑐) exists, then 

( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑐) = (1 − 𝛼)(𝑓(𝑐) − 𝑓(𝑎)) + 𝛼 lim

𝜀→0

𝑓(𝑐 + 𝜀(𝑐 − 𝑎)1−𝛼) − 𝑓(𝑐)

𝜀
. 

Since 𝑓(𝑐) is a locally maximum value then  

lim
𝜀→0+

𝑓(𝑐 + 𝜀(𝑐 − 𝑎)1−𝛼) − 𝑓(𝑐)

𝜀
≤ 0, 

and 

lim
𝜀→0−

𝑓(𝑐 + 𝜀(𝑐 − 𝑎)1−𝛼) − 𝑓(𝑐)

𝜀
≥ 0. 

This gives  

lim
𝜀→0

𝑓(𝑐 + 𝜀(𝑐 − 𝑎)1−𝛼) − 𝑓(𝑐)

𝜀
 = lim

𝜀→0+

𝑓(𝑐 + 𝜀(𝑐 − 𝑎)1−𝛼) − 𝑓(𝑐)

𝜀
 

= lim
𝜀→0−

𝑓(𝑐 + 𝜀(𝑐 − 𝑎)1−𝛼) − 𝑓(𝑐)

𝜀
 

= 0. 

Hence, we have 

( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑐) = (1 − 𝛼)(𝑓(𝑐) − 𝑓(𝑎)). 

Similarly, suppose that ( 𝑇̃𝛼𝑎
𝑅𝐿 𝑓)(𝑐) exists. Using the fact that lim

𝜀→0

𝑓(𝑐+𝜀(𝑐−𝑎)1−𝛼)−𝑓(𝑐)

𝜀
 must be 0, then 
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( 𝑇̃𝛼𝑎
𝑅𝐿 𝑓)(𝑐) = (1 − 𝛼)𝑓(𝑐) + 𝛼 lim

𝜀→0

𝑓(𝑐 + 𝜀(𝑐 − 𝑎)1−𝛼) − 𝑓(𝑐)

𝜀
= (1 − 𝛼)𝑓(𝑐). 

It completes the proof. 

If 𝑓 is 1-differentiable (that is differentiable in the sense of classical derivative), then we can see from 

the relation of 𝛼-derivative and derivative of a function that 

( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑡) = (1 − 𝛼)(𝑓(𝑡) − 𝑓(𝑎)) + 𝛼(𝑡 − 𝑎)1−𝛼𝑓′(𝑡), 

and 

( 𝑇̃𝛼𝑎
𝑅𝐿 𝑓)(𝑡) = (1 − 𝛼)𝑓(𝑡) + 𝛼(𝑡 − 𝑎)1−𝛼𝑓′(𝑡), 

we have 𝑓′(𝑐) = 0. This is in line with the result for the classical derivative. Now we provide some 

examples to elaborate further on the effectiveness of Theorem 9. 

Example 10. Let 0 ≤ 𝛼 ≤ 1. 

1. Suppose that 𝑓(𝑡) = sin 𝑡. We will evaluate ( 𝑇̃𝛼0
𝐶 𝑓) (

𝜋

2
) and ( 𝑇̃𝛼0

𝑅𝐿 𝑓) (
𝜋

2
). Since 𝑡 =

𝜋

2
 is a point of 

relative maximum, then based on Theorem 9 we have 

( 𝑇̃𝛼0
𝐶 𝑓) (

𝜋

2
) = (1 − 𝛼) (sin

𝜋

2
− sin 0) = 1 − 𝛼 

( 𝑇̃𝛼0
𝑅𝐿 𝑓) (

𝜋

2
) = (1 − 𝛼) sin

𝜋

2
= 1 − 𝛼. 

If we calculate directly from the definition or from Theorem 6, we get 

( 𝑇̃𝛼0
𝐶 𝑓) (

𝜋

2
) = ( 𝑇̃𝛼0

𝑅𝐿 𝑓) (
𝜋

2
) = (1 − 𝛼) sin

𝜋

2
+ 𝛼 (

𝜋

2
)

1−𝛼

cos
𝜋

2
= 1 − 𝛼. 

2. Suppose that 𝑔(𝑡) = cos 𝑡. We will evaluate ( 𝑇̃𝛼0
𝐶 𝑔)(𝜋) and ( 𝑇̃𝛼0

𝑅𝐿 𝑔)(𝜋). Since 𝑡 = 𝜋 is a point of 

relative minimum, then based on Theorem 9 we have 

( 𝑇̃𝛼0
𝐶 𝑔)(𝜋) = (1 − 𝛼)(cos 𝜋 − cos 0) = −2(1 − 𝛼), 

( 𝑇̃𝛼0
𝑅𝐿 𝑔)(𝜋) = (1 − 𝛼)(cos 𝜋) = −(1 − 𝛼). 

Meanwhile, if we compute using Theorem 6, we obtain 

( 𝑇̃𝛼0
𝐶 𝑔)(𝜋) = (1 − 𝛼)(cos 𝜋 − cos 0) − 𝛼𝜋1−𝛼 sin 𝜋 = −2(1 − 𝛼), 

and 

( 𝑇̃𝛼0
𝑅𝐿 𝑔)(𝜋) = (1 − 𝛼) cos 𝜋 − 𝛼𝜋1−𝛼 sin 𝜋 = −(1 − 𝛼). 

Khalil et al. [14] provide Rolle’s theorem for the conformable derivative, while Riemann-Liouville 

and Caputo fractional derivative do not satisfy Rolle’s theorem. In the following theorem, we present a 

property close to Rolle’s theorem for the improved conformable fractional derivative.   

Theorem 11. Let 𝑎 > 0 and 𝑓: [𝑎, 𝑏] → ℝ be a function which satisfies  

(1) 𝑓 is continuous on [𝑎, 𝑏] 

(2) 𝑓 is 𝛼-differentiable on (𝑎, 𝑏) for some 𝛼 ∈ (0,1) 

(3) 𝑓(𝑎) = 𝑓(𝑏). 

Then there exists 𝑐 ∈ (𝑎, 𝑏) such that ( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑐) = (1 − 𝛼)(𝑓(𝑐) − 𝑓(𝑎)) and ( 𝑇̃𝛼𝑎

𝑅𝐿 𝑓)(𝑐) =
(1 − 𝛼)𝑓(𝑐). 
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Proof. Suppose that 𝑓 is a constant function, that is 𝑓(𝑡) = 𝑓(𝑎). This guarantees that there exists at least 

one point in (𝑎, 𝑏), called 𝑐, such that  

( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑐) = 𝑇̃𝛼𝑎

𝐶 (𝑓(𝑎)) = 0 = (1 − 𝛼)(𝑓(𝑐) − 𝑓(𝑎)), 

and 

( 𝑇̃𝛼𝑎
𝑅𝐿 𝑓)(𝑐) = 𝑇̃𝛼𝑎

𝑅𝐿 (𝑓(𝑎)) = (1 − 𝛼)𝑓(𝑎) = (1 − 𝛼)𝑓(𝑐). 

Now suppose that 𝑓 is not a constant function. Since 𝑓 is continuous on [𝑎, 𝑏] and 𝑓(𝑎) = 𝑓(𝑏), then 𝑓 

has a relative extremum in (𝑎, 𝑏). Let 𝑐 ∈ (𝑎, 𝑏) be a point of relative extremum. By virtue of Theorem 

9, we get ( 𝑇̃𝛼𝑎
𝐶 𝑓)(𝑐) = (1 − 𝛼)(𝑓(𝑐) − 𝑓(𝑎)) and ( 𝑇̃𝛼𝑎

𝑅𝐿 𝑓)(𝑐) = (1 − 𝛼)𝑓(𝑐). 

From Theorem 11, we can see that an 𝛼-differentiable function in the sense of the improved Caputo-

type conformable fractional derivative satisfies Rolle’s theorem as in the classical derivative if the 

function is constant. However, it is slightly different for the improved Riemann-Liouville-type 

conformable fractional derivative. An 𝛼-differential function in the sense of the improved Riemann-

Liouville-type conformable fractional derivative does not satisfy the Rolle’s theorem as for the classical 

derivative only for identically vanishing function 𝑓(𝑡) = 0 for all 𝑡 ∈ [𝑎, 𝑏]. Surprisingly, if 𝑓 is 1-

differentiable then we can obtain 𝑓′(𝑐) = 0 for both the improved conformable fractional derivatives. 

This result is in line with the classical derivative.  

The conformable derivative has been proven to satisfy the mean value theorem. However, this is not 

the case for Riemann-Liouville and Caputo fractional derivatives. Both commonly used fractional 

derivatives do not have mean value theorem. In this paper, we give a theorem close to the mean value 

theorem for the improved Riemann-Liouville-type fractional derivative. 

Theorem 12. Let 𝑎 > 0 and 𝑓: [𝑎, 𝑏] → ℝ be a function that satisfies 

(1) 𝑓 is continuous on [𝑎, 𝑏] 

(2) 𝑓 is 𝛼-differentiable on (𝑎, 𝑏) for some 𝛼 ∈ (𝑎, 𝑏) in the sense of the improved Riemann-

Liouville-type fractional derivative. 

Then there exists 𝑐 ∈ (𝑎, 𝑏) such that 

𝑓(𝑏) − 𝑓(𝑎) = [( 𝑇̃𝛼0
𝑅𝐿 𝑓)(𝑐) + (𝛼 − 1)𝑓(𝑐)] (

1

𝛼
𝑒

1
𝛼

(𝑏𝛼−𝑐𝛼)
−

1

𝛼
𝑒

1
𝛼

(𝑎𝛼−𝑐𝛼)
). 

 

Proof. Consider the function 𝑔(𝑡) defined on [𝑎, 𝑏] as the following. 

𝑔(𝑡) = 𝑓(𝑡) − 𝑓(𝑎) −
𝑓(𝑏) − 𝑓(𝑎)

𝑒
1
𝛼

𝑏𝛼
− 𝑒

1
𝛼

𝑎𝛼
(𝑒

1
𝛼

𝑡𝛼

− 𝑒
1
𝛼

𝑎𝛼

). 

Note that 𝑔 is continuous on [𝑎, 𝑏], 𝛼-differentiable on (𝑎, 𝑏), and 𝑔(𝑎) = 𝑔(𝑏). Based on the Theorem 

11, there exists 𝑐 ∈ (𝑎, 𝑏) such that 

( 𝑇̃𝛼0
𝑅𝐿 𝑔)(𝑐) = (1 − 𝛼)𝑔(𝑐) 

= (1 − 𝛼) [𝑓(𝑐) − 𝑓(𝑎) −
𝑓(𝑏) − 𝑓(𝑎)

𝑒
1
𝛼

𝑏𝛼
− 𝑒

1
𝛼

𝑎𝛼
(𝑒

1
𝛼

𝑐𝛼

− 𝑒
1
𝛼

𝑎𝛼

)]. 

On the other hand,  

( 𝑇̃𝛼0
𝑅𝐿 𝑔)(𝑐) = ( 𝑇̃𝛼0

𝑅𝐿 𝑓)(𝑐) − (1 − 𝛼)𝑓(𝑎) −
𝑓(𝑏) − 𝑓(𝑎)

𝑒
1
𝛼

𝑏𝛼
− 𝑒

1
𝛼

𝑎𝛼
(𝑒

1
𝛼

𝑐𝛼

− (1 − 𝛼)𝑒
1
𝛼

𝑎𝛼

). 
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From the two above equations, by simplifying we have 

( 𝑇̃𝛼0
𝑅𝐿 𝑓)(𝑐) = (1 − 𝛼)𝑓(𝑐) + 𝛼

𝑓(𝑏) − 𝑓(𝑎)

𝑒
1
𝛼

𝑏𝛼
− 𝑒

1
𝛼

𝑎𝛼
 𝑒

1
𝛼

𝑐𝛼

 

= (1 − 𝛼)𝑓(𝑐) +
𝑓(𝑏) − 𝑓(𝑎)

1
𝛼 𝑒

1
𝛼

(𝑏𝛼−𝑐𝛼)
−

1
𝛼 𝑒

1
𝛼

(𝑎𝛼−𝑐𝛼)
. 

Thus, we get 

𝑓(𝑏) − 𝑓(𝑎) = [( 𝑇̃𝛼0
𝑅𝐿 𝑓)(𝑐) + (𝛼 − 1)𝑓(𝑐)] (

1

𝛼
𝑒

1
𝛼

(𝑏𝛼−𝑐𝛼)
−

1

𝛼
𝑒

1
𝛼

(𝑎𝛼−𝑐𝛼)
). 

It completes the proof. 

Theorem 12 can be used to characterize a constant function based on its 𝛼-derivative in the sense of 

the improved Riemann-Liouville-type conformable fractional derivative. The theorem is given in the 

following. 

Theorem 13. Let 𝑎 > 0 and 𝑓: [𝑎, 𝑏] → ℝ be a function which satisfies  

(1) 𝑓 is continuous on [𝑎, 𝑏] 

(2) 𝑓 is 𝛼-differentiable on (𝑎, 𝑏) for some 𝛼 ∈ (0,1) 

(3) ( 𝑇̃𝛼0
𝑅𝐿 𝑓)(𝑡) = (1 − 𝛼)𝑓(𝑡) for all 𝑡 ∈ (𝑎, 𝑏). 

Then 𝑓 is constant on [𝑎, 𝑏]. 

Proof. We will show that 𝑓(𝑡) = 𝑓(𝑎) for all 𝑡 ∈ [𝑎, 𝑏]. For 𝑡 > 𝑎, by virtue of Theorem 12, there exists 

𝑐 ∈ (𝑎, 𝑏) which is depending on 𝑡 such that 

𝑓(𝑡) −  𝑓(𝑎) = [( 𝑇̃𝛼0
𝑅𝐿 𝑓)(𝑐) + (𝛼 − 1)𝑓(𝑐)] (

1

𝛼
𝑒

1
𝛼

(𝑡𝛼−𝑐𝛼)
−

1

𝛼
𝑒

1
𝛼

(𝑎𝛼−𝑐𝛼)
) 

   = [(1 − 𝛼)𝑓(𝑐) + (𝛼 − 1)𝑓(𝑐)] (
1

𝛼
𝑒

1
𝛼

(𝑡𝛼−𝑐𝛼)
−

1

𝛼
𝑒

1
𝛼

(𝑎𝛼−𝑐𝛼)
) 

   = 0. 

Hence, we have 𝑓(𝑡) = 𝑓(𝑎) for any 𝑡 ∈ [𝑎, 𝑏]. Therefore 𝑓 is a constant function. 

In the classical derivative, if there are two continuous functions whose derivatives are the same in a 

closed interval, then the functions have a constant difference. This property is a result of the derivative 

of a constant function. However, this result does not apply to the improved Riemann-Liouville-type 

conformable fractional derivative. From Theorem 13, we can deduce that two 𝛼-derivatives of 𝛼-

differentiable functions have a constant difference if and only if the two functions have also a constant 

difference. 

 

Conclusion  

The relation between 𝛼-differentiable functions and its continuity has been provided. In terms of 

continuity property, the improved conformable fractional derivative and the conformable derivative have 

the same property as the classical derivative. The improved conformable fractional derivative as a 

modification of the conformable derivative has corresponding Rolle’s theorem and mean value theorem. 

We can conclude that alongside be a better approximation to Riemann-Liouville and Caputo fractional 

derivative, the improved conformable fractional derivative has nicer properties regarding Rolle’s theorem 

and mean value theorem compared to Riemann-Liouville and Caputo fractional derivatives. 
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