Pemodelan Return Saham Syariah di Indonesia menggunakan Model AGARCH dengan Distribusi Skewed Student-t

Muhammad Safi Mulhan, Mohammad Farhan Qudratullah

Program Studi Matematika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga, Jl. Marsda Adisucipto No. 1 Yogyakarta, Indonesia.

Korespondensi; Muhammad Safi Mulhan, Email: safikbisa@gmail.com

Abstrak

Terdapat 2 hal yang selalu menyertai investasi, yaitu return dan risiko, hal ini berlaku juga pada investasi saham syariah. Harga saham setiap harinya mengalami perubahan, datanya memiliki volatilitas yang tidak konstan (heterokedastisitas) dan bersifat tidak simetri (asimetri). Sehingga untuk memodelkannya dapat menunakan model Asymmetric Generalized Autoregressive Conditional Heteroscedasticity (AGARCH) dengan distribusi Skewed Student-t. Penelitian ini membahas pemodelan return saham syariah mengunakan data penutupan harian *Jakarta Islamic Index* (JII) periode Maret 2013-April 2017 dengan model AGARCH-Skewed Student-t. Hasil dari penelitian ini diperoleh bahwa model ARIMA(0,0,3)-AGARCH(2,0) adalah model terbaik untuk meramalkan return saham syariah.

Kata Kunci: AGARCH; Saham Syariah; Skewed student-t.

Abstract

Two things always accompany investment, namely, return and risk, this also applies to Islamic stock investments. Stock prices change every day, the data has the volatility that is not constant (heteroscedasticity) and is asymmetry. So to model it, we can use the Asymmetric Generalized Autoregressive Conditional Heteroscedasticity (AGARCH) model with the Skewed Student-t distribution. This study discusses the modeling of Islamic stock returns using the daily closing data of the *Jakarta Islamic Index* (JII) for the period March 2013-April 2017 with the AGARCH-Skewed Student-t model. The results of this study show that the ARIMA(0,0,3)-AGARCH (2,0) model is the best model for predicting Islamic stock returns.

Keywords: AGARCH; Sharia Stock; Skewed student-t.

Pendahuluan

Investasi merupakan komitmen atas sejumlah dana atau sumber daya lainnya yang dilakukan pada saat ini dengan tujuan untuk memperoleh keuntungan pada masa yang akan datang [1],[2]. Islam sangat menganjurkan umatnya untuk berinvestasi karena investasi menyebabkan harta seseorang menjadi produktif sehingga bermanfaat untuk dirinya juga untuk orang lain, syaratnya dilaksanakan sesuai prinsip syariah [3], [4], termasuk saat berinvestasi pada Pasar Modal. Pasar modal adalah pertemuan antara pihak yang memiliki kelebihan dana dengan pihak yang membutuhkan dana dengan cara memperjualbelikan sekuritas atau surat berharga. Investasi di Pasar Modal termasuk investasi pada saham syariah bersifat *high risk - high return* [5], sehingga perlu kemampuan memprediksi dan managemen risiko [6].

Keputusan untuk melakukan investasi selalu beriringan dengan probabilitas untung dan rugi yang mana tak seorang pun mampu mengetahui secara pasti yang akan terjadi. Yang dapat dilakukan adalah melakukan prediksi berdasarkan data masa lalu. Dalam ilmu statistika, alat untuk memprediksi kondisi masa yang akan datang berdasarkan data masa lampau disebut *forecasting* (peramalan) [7]. Data saham termasuk data saham syariah di Indonesia atau data indeks saham syariah *Jakarta Islamic Indeks* (JII) adalah merupakan deretan observasi variabel random yang dapat dinyatakan sebagai data runtun

waktu atau *time series* [8], sehingga alat analisis permalan yang digunakan disebut analisis data *time series* atau model *time-series*.

Model *time series* yang paling populer dan banyak digunakan dalam peramalan data *time series* univariat adalah model *Autoregressive Integrated Moving* atau yang dikenal dengan model ARIMA. Praktek pemodelan ARIMA pada suatu data ekonomi seringkali memberikan residual dengan varians yang tidak konstan (heterogen). Pada tahun 1982, Engle memperkenalkan model *Autoregressive Conditional Heteroscedasticity* (ARCH) untuk memodelkan inflasi di Inggris yang modelnya memilki varians tidak konstan [9]. Kemudian model ARCH dikembangkan dan disempurnakan menjadi model *Generalized Autoregressive Conditional Heteroscedasticity* (GARCH) oleh Bolerslev pada tahun 1986 [10].

Qudratullah mengungkapkan bahwa data return saham syariah di Indonesia (JII) memiliki residual yang tidak konstan, sehingga la membandingkan berbagai model *Conditional Heteroscedasticity Timeseries* dan diperoleh model terbaik adalah GARCH-M. Namun model tersebut memilki residual yang tidak normal [11]. Model GARCH atau GARCH-M sering tidak selalu menangkap secara penuh adanya *thick-tailed property* dari *financial time series* (termasuk pada return saham syariah) dengan frekuensi yang tinggi serta distribusi non normal dengan *excess* kurtosis. Sehingga perlu pengaplikasian suatu model kepadatan asimetrik yang stabil untuk menangkap *skweness* lebih baik [12]. Fernandez dan Steel mengungkapkan bahwa distribusi yang dapat digunakan untuk memodelkan *skweness* dan kurtosis adalah distribusi *Skewed Student-t* [13], yang selanjutnya diperluas oleh Lambert dan Laurent kedalam kerangka kerja GARCH [14]. Untuk mengatasi masalah tersebut, Peters mengusulkan perluasan non linear dari model, yaitu model Asymmetric GARCH (AGARCH) [15], [16]. Untuk itu, penelitian ini memodelkan return saham JII mengunakan model AGARCH dengan Distribusi *Skewed Student-t* serta melakukan prediksi menggunakan model tersebut.

Landasan Teori

Pasar Modal Syariah

Pasar modal syariah adalah kegiatan pada pasar modal yang pelaksanaanya sesuai dengan prinsip-prinsip syariah. Prinsip-prinsip syariah disini adalah prinsip hukum Islam yang ditetapkan oleh Dewan Syariah Nasional Majelis Ulama Indonesia (DSN-MUI) dalam Peraturan Bapepam-LK nomer II K. 1 tentang kriteria dan Penerbitan Daftar Efek Syariah [5]. Terdapat 3 indeks saham syariah di Indonesia, yaitu Indeks Saham Syariah Indonesia (ISSI), Jakarta Islamic Indeks 70 (JII70), dan Jakarta Iskamic Indeks (JII atau JII30). JII mulai ditetapkan pada tanggal 03 Juli 2000, indeks ini terdiri dari 30 perusahaan yang operasinya desuai dengan syariah dan dievaluasi setiap 6 bulan sekali melalui 2 tahap seleksi, yaitu seleksi syariah untuk menyaring 60 saham syariah dengan kapitalisasi pasar tertingi dan seleksi nilai volume transaksi untuk menyaring 30 saham dengan nilai transaksi rata-rata tertinggi harian dari hasil seleksi pertama [11],[17].

Return

Return adalah hasil (tingkat pengembalian) yang diperoleh sebagai akibat dari investasi yang dilakukan [17]. Ada dua jenis *return* yang digunakan untuk perhitungan return, yaitu *simple net return* (r_t) dan $log return(R_t)$ [18].

$$r_t = \frac{P_t - P_{t-1}}{P_{t-1}} = \frac{P_t}{P_{t-1}} - 1 \tag{1}$$

$$R_t = \ln\left(\frac{P_t}{P_{t-1}}\right) = \ln(P_t) - \ln P_{t-1}$$
 (2)

Dimana : r_t : adalah *simple net return* periode t

 R_t : adalah *log return* pada periode t P_t : adalah nilai *asset* pada periode t P_{t-1} : adalah nilai *asset* pada periode t-1

Model-Model Timeseries

Berikut disajikan beberapa model timeseries yang disarikan dari Enders tahun 1985 [19] dan Wei tahun 1990 [20], [11].

Model Stasioner (AR, MA, ARMA)

Bentuk umum dari proses Autoregressive AR(p) adalah sebagai berikut :

$$Y_t = c + a_1 Y_{t-1} + a_2 Y_{t-2} + \dots + a_p Y_{t-p} + \varepsilon_t \tag{3}$$

 Y_t = pengamatan runtun waktu ke-t c = nilai konstanta a_1, a_2, a_p = parameter autoregresif Keterangan:

= nilai kesalahan (residual) pada saat t

Bentuk umum dari model Moving Average MA(q) adalah sebagai berikut:

$$Y_t = c + b_1 \varepsilon_{t-1} + b_2 \varepsilon_{t-2} + \dots + b_q \varepsilon_{t-q} + \varepsilon_t \tag{4}$$

Keterangan: Y_t = pengamatan runtun waktu ke-t c = nilai konstanta

 a_1, a_2, a_p = parameter moving average ε_t = nilai kesalahan (residual) pada saat t

Bentuk umum dari model *Autoregressive Moving Average* ARMA(p,q) adalah sebagai berikut:

$$Y_{t} = c + a_{1}Y_{t-1} + a_{2}Y_{t-2} + \dots + a_{p}Y_{t-p} + b_{1}\varepsilon_{t-1} + b_{2}\varepsilon_{t-2} + \dots + b_{q}\varepsilon_{t-q} + \varepsilon_{t}$$
(5)

Model Autoregressive Integrated Moving Average (ARIMA)

Bentuk umum dari modelARIMA(p,d,q) adalah sebagai berikut:

$$X_{t} = (1 + \phi_{1})X_{t-1} + \dots + (\phi_{p} - \phi_{p-1})X_{t-p} - \phi_{p}X_{t-p-1} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} - \theta_{2}\varepsilon_{t-2} - \dots - \theta_{n}\varepsilon_{t-q}$$
 (6)

Model GARCH dan AGARCH

GARCH atau Generalized AutoRegressive Conditional Heteroscedasticity adalah generalisasi dari model ARCH yang dan dikembangkan oleh Bollerslev untuk memperbaiki ARCH [10], [21], [16]. Bentuk umum model GARCH(p,q) adalah sebagai berikut:

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^q \beta_j \sigma_{t-j}^2$$
 (7)

Secara umum model AGARCH(p,q) dinyatakan dengan persamaan:

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i (|\varepsilon_{t-1}| - \gamma_i \varepsilon_{t-1})^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2$$
 (8)

Distribusi Skewed Student-t

Distribusi Skewed Student-t yang diusulkan Fernandez dan Steel pada tahun 1998 [13], kemudian diperluas ke dalam model GARCH oleh Lambert dan Laurent pada tahun 2000 [14], [15]. Bentuk umum Distribusi Skewed Student-t adalah sebagai berikut:

$$E(|z_t|) = \frac{2\xi^2 \Gamma\left(\frac{1+\nu}{2}\right)^2 \sqrt{\nu-2}}{\xi + \frac{1}{\xi} \sqrt{\pi}(\nu-1)\Gamma\left(\frac{\nu}{2}\right)}$$
(9)

Metode Penelitian

Data yang digunakan dalam penelitian ini adalah mengenai indeks harga saham penutupan harian (closing prince). Data yang digunakan adalah data indeks harga saham syariah harian Jakarta Islamic Index (JII) periode 4 Maret 2013-28 April 2017 yang diperoleh dari yahoofinance.com. Berdasarkan data sekunder yang telah terkumpul, data kemudian diteliti dan dianalisis. Adapun langkah-langkah analisis data dilakukan sebagai berikut:

1. Uji Stasioneritas

Uji stasioneritas menggunakan uji akar unit *Augmented* Dickey-Fuller (ADF Test), jika data belum stasioner maka data perlu ditransformasi *differencing* agar data stasioner. Uji stasioner ini dilakukan terhadap data indeks harga saham JII.

2. Identifikasi model ARIMA dan Uji diagnostik terhadap model ARIMA Pada tahap ini akan dilakukan identifikasi terhadap data indeks harga harga saham JII untuk mengetahui model ARIMA yang tepat dalam meramalkan data. Kemudian uji diagnostik untuk mengetahui apakah model ARIMA yang kita peroleh sudah cukup baik untuk memodelkan data.

3. Uji Efek ARCH

Pada tahap ini akan dilakukan uji untuk mengetahui adanya unsur ARCH atau unsur heteroskedastisitas pada model ARIMA yang diperoleh.

4. Estimasi model GARCH dengan distribusi *Skewed Student-t* dan Uji diagnostik model GARCH Tahap ini merupakan tahap lanjutan jika terdapat unsur ARCH pada model ARIMA. Tahap ini dilakukan untuk menghilangkan unsur ARCH dengan memasukan model GARCH ke dalam model ARIMA. Kemudian dilakukan uji diagnostik untuk melihat model yang diperoleh dari tahap estimasi sudah tidak terdapat unsur ARCH didalamnya.

5. Uji Asimetris Model

Pada tahap ini akan dilakukan uji asimetris untuk menguji apakah data memiliki gejala asimetris atau tidak. Selanjutnya, jika bersifat simetris, maka menggunakan model GARCH yang telah diperoleh, jika bersifat asimetris, dilanjutkan memodelkan model AGARCH.

- 6. Estimasi model AGARCH dengan distribusi *Skewed Student-t* Uji diagnostik model AGARCH Tahap ini merupakan tahap lanjutan jika terdapat unsur ARCH pada model ARIMA dan perluasan non linear dari model GARCH. Tahap ini untuk mendapatkan model AGARCH. Kemudian dilakukan uji diagnostik untuk melihat model yang diperoleh dari tahap estimasi estimasi sudah tidak terdapat unsur ARCH didalamnya dan mendapatkan model AGARCH.
- 7. Pemilihan model terbaik

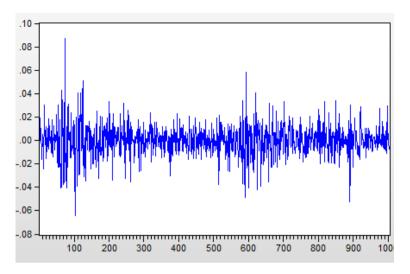
Tahap ini merupakan tahap pemilihan model terbaik dilakukan dengan membandingkan dua atau lebih model dengan tujuan peramalan.

8. Peramalan dengan model terbaik

Tahap ini merupakan tahap peramalan dengan model terbaik untuk memprediksi saham syariah untuk periode selanjutnya.

Hasil dan Pembahasan

Analisis Deskriptif


Data harga penutupan saham JII terdiri dari 1002 pengamatan dengan beberapa ringkasan statistik deskriptif disajikan pada Tabel 1, tampak bahwa return saham syariah bernilai positif, yaitu sekitar 0,02% dengan volatilitas 1,36%.

Tabel 1. Hasil Deskriptif Data Saham.

Data	Mean	Median	Std. Deviasi	Observasi
Saham	0.000224	0.000714	0.013572	1002

Uji Stasioneritas

Dari gambar 1 terlihat bahwa data return saham syariah menyebar disekitar titik 0, hal ini mengindikasikan bahwa secara grafik data telah stasioner dan didukung oleh hasil uji hipotesis mengunakan uji akar unit pada tabel 2. Karena nilai test critical values pada tingkat 1%, 5%, 10% > nilai ADF, dan nilai probabilitas adalah 0.0000 < 0.05, maka H₀ ditolak artinya data tidak mengandung unit root atau data stasioner.

Gambar 1. Plot data indeks harga saham JII.

Tabel 2. Hasil uji akar unit

		t-Statistic	Prob.*
Augmented Dickey-Ful	ller test statistic	-22.05691	0.0000
Test critical values:	1% level	-3.436676	
	5% level	-2.864222	
	10% level	-2.568250	

Identifikasi Model ARIMA dan Estimasi Model ARIMA

Setelah data stationer, langkah selanjutnya adalah mengestimasi model kondisional *mean*. Pada tahap estimasi model ARIMA ini diperoleh beberapa model yang memenuhi kriteria model terbaik karena nilai probabilitas dari masing-masing parameternya < 0,05. Antara lain: ARIMA (0,0,1) tanpa konstanta, ARIMA (0,0,2) tanpa konstanta, ARIMA (1,0,1) tanpa konstanta, ARIMA (2,0,0) tanpa konstanta, ARIMA (2,0,2) tanpa konstanta, ARIMA (2,0,3) tanpa konstanta, ARIMA (3,0,0) tanpa konstanta, ARIMA (3,0,2) tanpa konstanta.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
· ·	1	1	0.015	0.015	0.2236	0.636
d i	di	2	-0.061	-0.062	4.0037	0.135
□ i	🖆	3	-0.155	-0.154	28.213	0.000
(I	(1	4	-0.045	-0.047	30.288	0.000
ı j ı		5	0.009	-0.010	30.372	0.000
ψ	(1	6	-0.016	-0.047	30.641	0.000
ı)ı	1	7	0.025	0.011	31.283	0.000
ψ	(1	8	-0.033	-0.040	32.372	0.000
ıþ	1)	9	0.047	0.041	34.604	0.000
ψ	(1	10	-0.024	-0.026	35.175	0.000
ψ		11	-0.008	-0.012	35.238	0.000
Щ		12	-0.002	0.005	35.242	0.000
ψ	(1	13	-0.031	-0.036	36.227	0.001
ψ		14	-0.015	-0.024	36.469	0.001
ψ		15	-0.014	-0.016	36.680	0.001
ψ	t h	16	-0.036	-0.055	37.999	0.002
ı)		17	0.025	0.018	38.654	0.002
ı) ı	• •	18	0.040	0.025	40.318	0.002
qi	•	19	-0.051	-0.067	42.951	0.001

Gambar 2. Plot ACF dan PACF.

Tabel 3. Hasil Estimasi Model ARIMA (p,d,q).

	Model ARIMA (p,d,q)		Koeffisien Estimasi Parameter	Prob	SIC
4 D I	Dancar Vanatanta	С	0.000224	0.5848	F 74F741
ARIMA (2,0,0) -	Dengan Konstanta	ϕ_2	-0.061202	0.0149	-5.74574
(2,0,0)	Tanpa Konstanta	ϕ_2	-0.060905	0.0138	-5.75233
ARIMA	Daniel Vandente	C	0.000221	0.5505	F 76621
(3,0,0)	Dengan Konstanta	ϕ_3	-0.154985	0.0000	5.76631
-	Tanpa Konstanta	ϕ_3	-0.154701	0.0000	-5.77284
ARIMA	D V	C	0.000224	0.6118	F 74222
(0,0,1)	Dengan Konstanta	θ_1	0.016843	0.4468	5.74223
-	Tanpa Konstanta	θ_1	0.017143	0.4345	-5.74887
ARIMA		C	0.000224	0.5810	5.74615
(0,0,2)	Dengan Konstanta	θ_2	-0.067902	0.0074	-5.74615
-	Tanpa Konstanta	θ_2	-0.067525	0.0068	-5.75273
ARIMA	·	Č	0.000220	0.5402	F 76740
(0,0,3)	Dengan Konstanta	θ_3	-0.160645	0.0000	5.76740
-	Tanpa Konstanta	θ_3	-0.160249	0.0000	-5.77391
ARIMA	·	C	0.000216	0.4626	
(1,0,1)	Dengan Konstanta	ϕ_1	0.808422	0.0000	- -5.74885
	Ü	θ_1	-0.877719	0.0000	_
-	T	ϕ_1	0.806628	0.0000	F ===40
	Tanpa Konstanta	$\frac{\theta_1}{\theta_1}$	-0.875336	0.0000	5.75513
ARIMA		C	0.000220	0.5311	
(2,0,2)	Dengan Konstanta	ϕ_2	0.667206	0.0000	-5.74406
	Ü	θ_2	-0.737895	0.0000	_
-	T	ϕ_2	0.664834	0.0000	
	Tanpa Konstanta	θ_2	-0.735124	0.0000	5.75053
ARIMA		C	0.000220	0.5213	
(2,0,3)	Dengan Konstanta	ϕ_2	-0.062539	0.0148	- -5.76443
	Ü	θ_3	-0.161951	0.0000	_
-	.	ϕ_2	-0.062120	0.0140	
	Tanpa Konstanta	$\frac{\tau_2}{\theta_3}$	-0.161490	0.0000	5.77089
ARIMA		C	0.000221	0.5282	
(3,0,2)	Dengan Konstanta	ϕ_3	-0.154622	0.0000	- -5.76345
	3	$\frac{-\varphi_3}{\theta_2}$	-0.066773	0.0098	_
-		ϕ_3	-0.154302	0.0000	
	Tanpa Konstanta	$\frac{-\varphi_3}{\theta_2}$	-0.066288	0.0094	5 . 76993.

Uji Efek ARCH

Dari tabel 4 diketahui bahwa kesembilan model tersebut memiliki nilai probabilitas < 0,05 sehingga ketiga model tersebut mengandung efek ARCH, sehingga akan dipilih model terbaik dengan nilai SIC paling kecil sebesar-5.773918yaitu model ARIMA (0,0,3).

Tabel 4. Uji Efek ARCH.

Model	Prob*	Efek ARCH	SIC
ARIMA(0,0,1)	0.0000	Ya	-5.748871
ARIMA(0,0,2)	0.0000	Ya	-5.752731
ARIMA (0,0,3)	0.0000	Ya	-5.773918
ARIMA (1,0,1)	0.0000	Ya	-5.755132
ARIMA (2,0,0)	0.0000	Ya	-5.752332
ARIMA (2,0,2)	0.0000	Ya	-5.750534
ARIMA (2,0,3)	0.0000	Ya	-5.770893
ARIMA (3,0,0)	0.0000	Ya	-5.772843
ARIMA (3,0,2)	0.0000	Ya	-5.769935

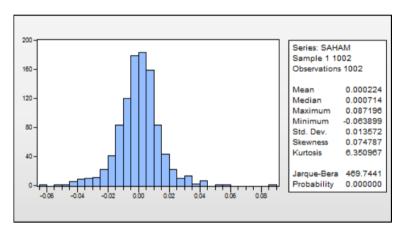
Identifikasi Model GARCH dengan Distribusi Skewed Student-t dan Estimasi Model GARCH

Pemodelan GARCH adalah pemodelan ARIMA (0,0,3) yang variansinya dimodelkan dengan model GARCH karena variansinya terdapat efek heterokedastisitas. Pada tahap ini akan dilakukan identifikasi model GARCH (p,q), dengan model meannya ARIMA (0,0,3). Langkah selanjutnya akan dilakukan estimasi parameter dari, masing-masing model tersebut. Setelah dilakukan uji estimasi model GARCH (p,q) diperoleh model terbaik dengan nilai probabilitas kurang dari tingkat signifikasi 5% yaitu GARCH (2,0), GARCH (3,0), GARCH (0,3), GARCH (1,1), GARCH (2,1), dan GARCH (2,3).

Tabel 5 Hasil Estimasi Model GARCH (p,q).

Me	odel GARCH (p,q)	Koeffisien E	stimasi Parameter	Prob	SIC
GARCH	Model ARIMA (0,0,3)	θ_3	-0.101323	0.0002	-5.907788
(2,0)		C	0.000116	0.0000	
	Model Variansi -	α_1	0.264772	0.0002	
	Moder variansi -	α_2	0.129834	0.0170	
	-	<u>-</u>	5.116985	0.0000	
GARCH	Model ARIMA (0,0,3)	θ_3	-0.091705	0.0048	-5.911632
(3,0)		С	0.000101	0.0000	
	_	α_1	0.230412	0.0004	
	Model Variansi	α_2	0.099772	0.0432	
	_	α_3	0.129788	0.0041	
			5.710283	0.0000	
GARCH	Model ARIMA (0,0,3)	θ_3	-0.120022	0.0000	-5.864526
(0,3)		С	4.20E-07	0.0000	
		eta_1	0.987108	0.0000	
	Model Variansi	β_2	1.015645	0.0000	
		β_3	-1.005034	0.0000	
	-	, ,	4.711360	0.0000	
GARCH	Model ARIMA (0,0,3)	θ_3	-0.101368	0.0017	-5.946466
(1,1)		С	6.45E-06	0.0134	
	Model Variansi -	α_1	0.096864	0.0001	
	Moder variansi -	β_1	0.868133	0.0000	
		· -	7.058925	0.0000	
GARCH	Model ARIMA (0,0,3)	θ_3	-0.103731	0.0009	-5.944332
(2,1)		С	3.62E-06	0.0406	
	-	α_1	0.178507	0.0023	
	Model Variansi	α_2	-0.115521	0.0458	
		eta_1	0.917210	0.0000	
	<u> </u>		7.147494	0.0000	
GARCH	Model ARIMA (0,0,3)	$ heta_3$	-0.105403	0.0005	-5.935828
(2,3)		С	1.50E-05	0.0112	
	-	α_1	0.137456	0.0000	
		α_2	0.098956	0.0017	
	Model Variansi	eta_1	-0.474357	0.0000	
		β_2	0.355870	0.0000	
		β_3	0.797528	0.0000	
	-	, ,	7.668611	0.0001	

Uji Diagnosa Model GARCH


Dari hasil diagnosa keenam model GARCH (p,q) diperoleh bahwa semua model melanggar asumsi normalitas saham dan semua model tidak mengandung unsur autokorelasi, namun ada lima model yang memenuhi asumsi homokedastisitas yaitu model GARCH (2,0),GARCH (3,0), GARCH (1,1), GARCH (2,1) dan GARCH (2,3). Sehingga diperoleh model terbaik yaitu model GARCH (1,1), karena mempunyai nilai SIC terkecil yaitu -5,946466.

Tabel 6. Hasil Pemerikasaan Diagnosa Model GARCH (p,q).

Model GARCH	Normalitas	Autokorelasi	Homokedastisitas	SIC
GARCH(2,0)	Tidak	Tidak	Ya	-5,907788
GARCH (3,0)	Tidak	Tidak	Ya	-5,911632
GARCH (0,3)	Tidak	Tidak	Tidak	-5,864526
GARCH (1,1)	Tidak	Tidak	Ya	-5,946466
GARCH (2,1)	Tidak	Tidak	Ya	-5,944332
GARCH (2,3)	Tidak	Tidak	Ya	-5,935828

Uji Asimetris

Tahap ini dilakukan pengujian asimetris data. Dari uji Jarque-Bera diperoleh bahwa nilai skewness (kemenjuluran) yaitu 0.074787. Dalam hal ini mengindikasikan bahwa data menjulur kekanan, atau mempunyai ekor yang lebih panjang pada bagian kanan dan dihasilkan *Jarque-Bera* (JB) = $469.7441 > x_{(0.05;2)}^2 = 5,991$, dan dan nilai probabilitas 0.0000 < 0.05 maka H_0 ditolak artinya data berdistibusi tidak normal. Sehingga dapat disimpulkan bahwa data tidak simetris atau asimetris. Dilanjutkan langkah berikutnya yaitu memodelkan dengan model AGARCH (p,q).

Gambar 3. Histogram dan Uji Normalitas.

Identifikasi Model AGARCH dengan Distribusi Skewed Student-t dan Estimasi Model AGARCH

Karena terbukti adanya efek asimetris pada saham syariah *Jakarta Islamic Index(JII)*, maka untuk menghilangkan efek asimetris yang diakibatkan berita *good news* dan *bad news* dilakukan pemodelan variansi dengan model AGARCH. Akan di coba model AGARCH (1,0), AGARCH (2,0), AGARCH (3,0), AGARCH (0,1), AGARCH (0,2), AGARCH (0,3), AGARCH (1,1), AGARCH (1,2), AGARCH (1,3), AGARCH (2,1), AGARCH (2,2), AGARCH (2,3), AGARCH (3,1), AGARCH (3,2), dan AGARCH (3,3).

Langkah selanjutnya akan dilakukan estimasi parameter dari masing-masing model tersebut. Setelah dilakukan uji estimasi model AGARCH (p,q) diperoleh empat model yang signifikan. Model yang signifikan adalah model AGARCH (1,0), AGARCH (2,0), AGARCH (3,0), dan AGARCH (1,1) dengan menghilangkan C (konstanta).

Tabel 7. Hasil Estimasi Model AGARCH (p,q).

	Model AGARCH(p,q)		Koeffisien Estimasi Parameter	Prob	SIC
	Model ARIMA (0,0,3)	θ_3	-0.119884	0.0000	
		С	0.011358	0.6000	
AGARCH		α_0	0.288497	0.0000	E 006000
(1,0)	Model Variansi	α_1	0.328518	0.0111	-5.896889
		γ_1	0.979448	0.0242	
		t	5.354237	0.0000	
AGARCH	Model ARIMA (0,0,3)	θ_3	-0.108054	0.0001	-5.899985
(2,0)		Č	0.001435	0.6831	
		α_0	0.271194	0.0000	
	Model Variansi —	α_1	0.313677	0.0237	
	Model Variansi —	α_2	0.134491	0.0102	
		γ_1	1.425961	0.0101	
		t	5.299838	0.0000	
AGARCH	Model ARIMA (0,0,3)	θ_3	-0.105119	0.0011	-5.904561
(3,0)		Ĉ	0.001672	0.6410	
		α_0	0.238096	0.0001	
		α_1	0.365041	0.0212	
	Model Variansi	α_2	0.107326	0.0279	
		α_3	0.149283	0.0012	
		γ_1	1.361306	0.0049	
		t	5.934658	0.0000	
AGARCH	Model ARIMA (0,0,3)	θ_3	-0.100222	0.0013	-5.945495
(1,1)		Č	0.000955	0.5186	
		α_0	0.086528	0.0000	
	Model Variansi —	α_1	0.571786	0.0014	
	Model Variansi —	β_1	0.902794	0.0000	
	_	γ_1	0.816264	0.0151	
		t	7.507445	0.0001	

Uji Diagnosa Model AGARCH

Berdasarkan tabel hasil pemeriksaan diagnosa model AGARCH bahwa model AGARCH yang terbaik adalah model AGARCH (1,0) dan model AGARCH (2,0).

Tabel 8. Hasil Pemeriksaan Diagnosa Model AGARCH (p,q).

Model AGARCH	Normalitas	Autokorelasi	Homokedastisitas
(1,0)	Tidak	Tidak	Ya
(2,0)	Tidak	Tidak	Ya
(3,0)	Tidak	Ya	Ya
(1,1)	Tidak	Ya	Ya

Pemilihan Model AGARCH Terbaik

Untuk memilih satu model terbaik dari dua model yang diperoleh pada tahap sebelumnya, maka dilakukan perbandingan MAPE dari tiap model. Model yang terbaik adalah model yang memiliki MAPE yang paling kecil. Nilai MAPE akan diketahui dengan meramalkan kedua model tersebut. Berikut adalah data aktual indeks harga saham JII dan hasil peramalan menggunakan kedua model tersebut:

Tabel 9. Da	ta Aktual	dan Dat	a Peramalan	Dua	Model	AGARCH.
-------------	-----------	---------	-------------	-----	-------	---------

T	Data Aldural	Data Peramalan ARIMA	(0,0,3)- model AGARCH
Tanggal	Data Aktual —	AGARCH (1,0)	AGARCH (2,0)
4/3/2017	726.59	718.3477	718.3480
4/4/2017	735.07	726.5896	726.5896
4/5/2017	734.74	735.0721	735.0719
4/6/2017	729.4	734.7400	734.7400
4/7/2017	723.82	729.3985	729.3987
4/10/2017	721.06	723.8192	723.8193
4/11/2017	720.43	721.0600	721.0600
4/12/2017	726.57	720.4305	720.4304
4/13/2017	721.7	726.5704	726.5703
4/17/2017	713.85	721.7011	721.7010
4/18/2017	717.37	713.8482	713.8484
4/20/2017	718.42	717.3695	717.3695
4/21/2017	739.8	718.4219	718.4217
4/25/2017	740.17	739.7996	739.7996
4/26/2017	744.76	740.1734	740.1731
4/27/2017	744.21	744.7565	744.7568
4/28/2017	738.19	744.2107	744.2106

Berdasarkan tabel di atas, maka nilai MAPE dari model ARIMA-AGARCH tersebut dapat dihitung sebagai berikut:

1. Model ARIMA(0,0,3)-AGARCH(1,0)

MAPE =
$$\frac{\sum_{t=1}^{n} \left(\frac{|y_t - \hat{y}_t|}{y_t} \right)}{n} \times 100\%$$
MAPE =
$$\frac{\sum_{t=1}^{17} \left(\frac{|y_t - \hat{y}_t|}{y_t} \right)}{999} \times 100\%$$
= 0.1555292%

Jadi nilai MAPE dari model ARIMA(0,0,3)-AGARCH(1,0) adalah 0.1555292%

2. Model ARIMA(0,0,3)-AGARCH(2,0)

MAPE =
$$\frac{\sum_{t=1}^{n} \left(\frac{|y_t - \hat{y}_t|}{y_t} \right)}{n} \times 100\%$$
MAPE =
$$\frac{\sum_{t=1}^{17} \left(\frac{|y_t - \hat{y}_t|}{y_t} \right)}{999} \times 100\%$$
= 0.1555291%

Jadi nilai MAPE dari model ARIMA(0,0,3)-AGARCH(2,0) adalah 0.1555291%

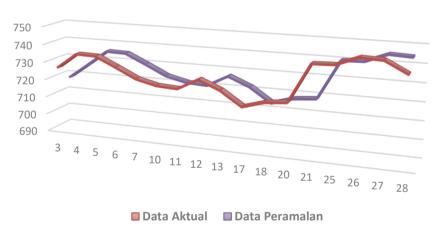
Berdasarkan nilai MAPE di atas dapat diketahui bahwa nilai MAPE dari model ARIMA(0,0,3)-AGARCH(2,0) paling kecil dari pada nilai MAPE model lainnya.

Peramalan Model Terbaik

Berdasarkan hasil estimasi diperoleh persamaan dari model ARIMA(0,0,3)-AGARCH(2,0) sebagai berikut:

• Model ARIMA(0,0,3) $X_t = X_{t-1} + 0.108054\varepsilon_{t-3}$

Model AGARCH(2,0)


$$\sigma_t^2 = 0.271194 + 0.313677(|\varepsilon_{t-1}| - 1.425961\varepsilon_{t-1})^2 + 0.134491(|\varepsilon_{t-2}| - 1.425961\varepsilon_{t-2})^2$$

Setelah diketahui bahwa model ARIMA(0,0,3)-AGARCH(2,0) adalah model terbaik, maka langkah selanjutnya adalah melakukan peramalan. Disini yang diramalkan bukan return saham syariah, melainkan indeks harga JII untuk beberapa periode yg akan datang.

Tabel 11. Data Aktual dan Data Peramalan Model AGARCH (2	label II. Dat	2,0).
--	---------------	-------

Tanggal	Data Aktual	Data Peramalan AGARCH (2,0)
4/3/2017	726.59	718.3480
4/4/2017	735.07	726.5896
4/5/2017	734.74	735.0719
4/6/2017	729.4	734.7400
4/7/2017	723.82	729.3987
4/10/2017	721.06	723.8193
4/11/2017	720.43	721.0600
4/12/2017	726.57	720.4304
4/13/2017	721.7	726.5703
4/17/2017	713.85	721.7010
4/18/2017	717.37	713.8484
4/20/2017	718.42	717.3695
4/21/2017	739.8	718.4217
4/25/2017	740.17	739.7996
4/26/2017	744.76	740.1731
4/27/2017	744.21	744.7568
4/28/2017	738.19	744.2106

Tabel di atas menjelaskan bahwa data hasil peramalan menggambarkan bahwa nilai indeks harga saham JII untuk periode 3 April 2017 sampai 28 April 2017 hampir mendekati nilai yang sama dengan data aktual indeks harga saham JII untuk periode 3 April 2017 sampai 28 April 2017. Perbedaan antara data aktual indeks harga saham JII serta hasil peramalan dengan model ARIMA(0,0,3)-AGARCH(2,0) untuk periode 3 April 2017 sampai 28 April 2017 disajikan pada grafik di bawah ini:

Gambar 4. Grafik Perbandingan Data Aktual dan Peramalan pada Bulan April 2017.

Kesimpulan

Berdasarkan hasil estimasi diperoleh persamaan dari model ARIMA(0,0,3)-AGARCH(2,0) sebagai berikut:

- Model ARIMA(0,0,3) $X_t = X_{t-1} + 0.108054\varepsilon_{t-3}$
- Model AGARCH(2,0) $\sigma_t^2 = 0.271194 + 0.313677(|\varepsilon_{t-1}| 1.425961\varepsilon_{t-1})^2 + 0.134491(|\varepsilon_{t-2}| 1.425961\varepsilon_{t-2})^2$

Peramalan data runtun waktu dengan model terbaik yaitu model ARIMA(0,0,3)-AGARCH(2,0). Data hasil peramalan menunjukan bahwa nilai indeks harga saham JII untuk periode 3 April 2017 sampai 28 April 2017 hampir mendekati nilai yang sama dengan data aktual indeks harga saham JII untuk

periode 3 April 2017 sampai 28 April 2017. Dengan demikian model tersebut bisa untuk meramalkan indeks harga saham yang akan datang dengan nilai MAPE atau nilai kesalahan rata-rata sebesar 0.1555291%.

Referensi

- [1] Tandelilin, E. 2010. Portofolio dan Investasi, Teori dan Aplikasi. Yogyakarta: Kanisius.
- [2] Saputro, T. A. dan Qudratullah, M. F. 2017. Optimasi Multi Objektif Pada Pemilihan Portofolio Saham Syariah Menggunakan Compromise Programming (CP) dan Nadir Compromise Programming (NCP). *Jurnal Fourier*, *6*(2), 91 104. https://doi.org/10.14421/fourier.2017.62.91-104
- [3] Sari, I. P. dan Qudratullah, M. F. 2016. Analisis Kinerja Portofolio Optimal Constant Correlation Model Pada Saham Syariah Dengan Menggunakan Metode Sortino, Treynor Ratio Dan M2. Jurnal Fourier, 5(2), 8592. https://doi.org/10.14421/fourier.2016.52.85-92
- [4] Qudratullah, M. F. 2020a. Zakah Rate In Islamic Stock Performance Models: Evidence From Indonesia. *IQTISHADIA*. Vol: 13 (1): 107-125. DOI:10.21043/iqtishadia.v13i1.6004
- [5] Jogiyanto, H. 2013. Teori Portofolio dan Analisis Investasi. Yogyakarta: BPFE-Yogyakarta.
- [6] Qudratullah, M. F. 2020b. Hubungan antara Suku Bunga, Produk Domestik Bruto, Inflasi dan Indeks Harga Saham Syariah di Pasar Modal Indonesia. *Prosiding Konferensi Integrasi Interkoneksi Islam Dan Sains, 2,* 425-429. Retrieved from http://sunankalijaga.org/prosiding/index.php/kiiis/article/view/434
- [7] **Darmadji**, **T.** dan **Fakhruddin**, **H. M**. 2001. Pasar Modal di Indonesia, Pendekatan Tanya Jawab. Jakarta: Salemba Empat.
- [8] Hidayatullah, S. dan Qudratullah, M. F. 2017. Analisis Risiko Investasi Saham Syariah Dengan Model Value AT Risk-Asymmetric Power Autoregressive Conditional Heterocedasticity (VaR-APARCH). *Jurnal Fourier*, 6(1), 3743. https://doi.org/10.14421/fourier.2017.61.37-43
- [9] Engle, R. F. 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. *Econometrica*. Vol. 50 (4), pp. 987-1007. https://doi.org/10.2307/1912773.
- [10] **Bollerslav**, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics. Volume 31 (3): 307-327. https://doi.org/10.1016/0304-4076(86)90063-1.
- [11] **Qudratullah**, M. F. 2013. Perbandingan Berbagai Model Conditionally Heteroscedastic Time Series Dalam Analisis Risiko Investasi Saham Syariah Dengan Metode Value At Risk. *Jurnal Fourier*, 2(1), 19. https://doi.org/10.14421/fourier.2013.21.1-9.
- [12] Liu, S. M., dan Brorsen, B. 1995. Maksimum Likelihood Estimatin of a GARCH STABLE Models, Journal of Applied Econometrics, 15: 117- 136.
- [13] **Fernndez**, **C.** dan **Steel**, **M**. 1998. Modeling The Changing of Fat Tails and Skweness, Journal of The American Statistical Association, 93: 359-371.
- [14] Lambert, P. dan Laurent, S. 2000. Modeling Skewness Dynamics in Series of Financial Data, Discussion Paper Institut de Statistique, Louvain-la-Neuve.
- [15] **Peters**, J. P. 2001. Estimating and Forecasting Volatility of Stock Indices Using Asymmetric GARCH Models, Ecole dAdministration des Affaires, University of Liege, Belgium.
- [16] Wahyuni, S.T., Nur Iriawan, N. dan Dwiatmono A.W. Peramalan Volatilitas Indeks Harga Saham Menggunakan Model Asimetrik GARCH (Generalized Autoregressive Conditional Heteroscedasticity) Dengan Distribusi Skewed Student-t. Jurnal Matematika Vol. 8 (1): 26-32.
- [17] **Qudratullah**, M. F. 2019. Treynor Ratio to Measure Islamic Stock Performance in Indonesia. *Jurnal Fourier*, 8(1), 113. https://doi.org/10.14421/fourier.2019.81.1-13
- [18] **Rifa'i**, A. F. Qudratullah, M. F. dan Riyanto. 2016. Pengembangan Website JII-Analisa.Com sebagai Alat Analisis Tipologi Saham Syariah di Indonesia. Integrated Lab Journal, Vol. 4 (2): 153-166. https://doi.org/10.14421/ilj.2016.%25x
- [19] Enders, W. 1985. Applied Econometritcs Time Series. New York: John Willey & Sons, Inc
- [20] **Wei**, W.W.S., 1990. Time Series Analysis, Univariate and Multivariate Methods. Addison-Wesley Publishing Company, Inc.
- [21] Mills, TC. 1999. Time Series Technique for Economist. Cambridge University, Cambridge.