Image (Pre-image) Homomorfisme Interior Subgrup Fuzzy
DOI:
https://doi.org/10.14421/fourier.2019.81.15-18Keywords:
Image, pre-image, interior subgrup, interior subgrup fuzzy, homomorfisma grupAbstract
Dalam makalah ini, akan diperkenalkan notasi image (pre-image) di bawah homomorfisma grup, dan akan dibuktikan image (pre-image) interior subgrup fuzzy (interior subgrup) di bawah homomorfisma grup selalu interior subgrup fuzzy (interior subgrup).
[In this paper, we will introduce the image (pre-image) under the group homomorphism, and we will prove the image (pre-image) of the interior of the fuzzy subgroup (the interior of the subgroup) under the group homomorphism is always the interior of the fuzzy subgroup (the interior of the subgroup).]
Downloads
References
[2] A. Rosenfeld, 1971. Fuzzy groups, J. Math. Anal. Appl., vol. 35, no. 3, pp. 512–517.
[3] N. Kuroki, 1982,“Fuzzy Semiprime Ideals in Semigroup,” Fuzzy Sets Syst., vol. 8, no. 1, pp. 71–79.
[4] K. Jeyaraman, 2010. The Homomorphism and Anti-Homomorphism of Level Subgroups of Fuzzy Subgroups,”Int. Math. Forum, vol. 5, no. 46, pp. 2293–2298.
[5] S. Abdurrahman, 2018,“Interior Subgrup Fuzzy, J. Fourier, vol. 7, no. 1, pp. 13–21.
[6] S. Hotta, 2018,“Introductory Group Theory, in Mathematical Physical Chemistry: Practical and Intuitive Methodology, Singapore: Springer Singapore, pp. 445–456.
[7] R. Lal, 2017.“Group Theory,”in Algebra 1: Groups, Rings, Fields and Arithmetic, Singapore: Springer Singapore, pp. 93–143.
[8] J. N. Mordeson, 2011.“Zadeh’s influence on mathematics, Sci. Iran., vol. 18, no. 3 D, pp. 596–601.
[9] N. Ajmal and I. Jahan, 2012,“A study of normal fuzzy subgroups and characteristic fuzzy subgroups of a fuzzy group, Fuzzy Inf. Eng., vol. 4, no. 2, pp. 123–143.
[10] A. A. Talebi, 2018,“Cayley fuzzy graphs on the fuzzy groups,”Comput. Appl. Math., pp. 1–22.
[11] P. S. Das, 1981. Fuzzy groups and level subgroups, J. Math. Anal. Appl., vol. 84, no. 1, pp. 264–269.
[12] C. Bejines, M. Jes´us Chasco, J. Elorza, and S. Montes, 2018, On the Preservation of an Equivalence Relation Between Fuzzy Subgroups,”vol. 641, pp. 159–167.
[13] S. D. Kim and H. S. Kim, 1996. On Fuzzy Ideals of Near-Ring, Bull Korean Math. Soc, vol. 33, no. 4, pp. 593–601.
[14] R. Kumar, 1991, Homomorphisms and fuzzy (fuzzy normal) subgroups,”Fuzzy Sets Syst., vol. 44, no. 1, pp. 165–168.