Aplikasi Algoritma Tabu Search dan Safety Stock Pada Penentuan Rute Distribusi Air Mineral di Daerah Istimewa Yogyakarta

  • Anita Nurul Firdaus UIN Sunan Kalijaga
  • Pipit Pratiwi Rahayu UIN Sunan Kalijaga
Keywords: Algoritma Tabu Search, Capacitated Vehicle Routing Problem (CVRP), Nearest Neighbor, Safety Stock

Abstract

Pendistribusian produk berperan penting dalam dunia industri.  Salah satu usaha yang dapat dilakukan perusahaan untuk mengoptimalkan pendistribusian produk adalah meminimalkan biaya tranportasi melalui penentuan rute optimal kendaraan yang disebut dengan VRP (Vehicle Routing Problem). Tujuan dari VRP adalah menentukan rute optimal yaitu rute dengan jarak minimum untuk mendistribusikan produk kepada konsumen. Salah satu variasi VRP adalah Capacitated Vehicle Routing Problem (CVRP), yaitu VRP dengan kendala kapasitas kendaraan. Kasus CVRP tersebut dapat diselesaikan dengan menggunakan Algoritma Tabu Search. Cara kerja Algoritma Tabu Search dimulai dengan penentuan initial solution menggunakan Nearest Neighbor, evaluasi move menggunakan  Exchange, 2-Opt, Relocated, dan Cross Exchange, update Tabu List, kemudian apabila kriteria pemberhentian terpenuhi  maka proses Algoritma Tabu Search berhenti jika tidak, maka kembali pada evaluasi move. Proses perhitungan Algoritma Tabu Search dilakukan secara manual pada PT IAP. Setiap perusahaan distributor atau pun jasa selalu mengadakan persediaan, salah satunya adalah Safety Stock. Perhitungan sederhana Safety Stock dapat membantu menyelesaikan persediaan pengaman yang harus dipersiapkan perusahaan untuk mengurangi tingkat kerugian. Berdasarkan proses perhitungan manual diperoleh solusi pendekatan optimal yaitu rute dengan total jarak terpendek sebesar 138,834 km dan nilai untuk Safety Stock adalah ± 9 karton.

[Distribution of the product play an important role in the industry field. The effort done by the companies to optimize the distribution is minimize transportation fee by deciding the shortest route of the vehicle, known as Vehicle Routing Problem (VRP). The purpose of VRP is to determine the optimal route of the route with a minimum distance to distribute product to the consumer. One of the varieties of VRP is Capacitated Vehicle Routing Problem (CVRP), which is VRP with vehicle capacity problems. CVRP case can be solved by using Tabu Search Algorithm. How it works Tabu Search Algorithm starts with the determination of the initial solution using the Nearest Neighbor, evaluating the move using Exchange, 2-Opt, Relocated, and Cross Exchange, updates Tabu List, then when the criteria for termination are met then the Tabu Search algorithm stop if not, then go back to the evaluation of the move. Tabu Search Algorithm calculation process is done manually PT IAP.  Every distributor or service company always hold inventory, one of them is Safety Stock. The simple calculation of Safety Stock can help solve the safety availability that should be prepared by the companies and reduce the level of losses. Based on the manual calculation process obtained optimal solution approach that is route with the shortest route to the optimal total distance of 138,834 km and the value of safety stock is ± 9 cartons.]

Author Biographies

Anita Nurul Firdaus, UIN Sunan Kalijaga

Program Studi Matematika, Fakultas Sains dan Teknologi

Pipit Pratiwi Rahayu, UIN Sunan Kalijaga

Program Studi Matematika Fakultas Sains dan Teknologi

References

[1] Alkallak, Isra Natheer, & Shaban, Ruqaya Z. 2008. Tabu Search Method For Solving The Traveling Salesman Problem. Raf. J. of Comp. & Math’s. 5:141-153
[2] Al-Mahally, Imam Jalaluddin & Imam Jalaluddin As-suyutti. 1990. Tafsir Jalalain Berikut Asbab Annujulnya, Jilid I. Bandung: Penerbit Sinar Baru.
[3] Ballou, Ronald H. 2006. Bussiness Logistic Management. United State: Prenticehall.
[4] Christopher, Martin. 2011. Logistics & Supply Chain Management Fourt Edition. United Stated of America: Prentice Hall, Inc.
[5] Cordeau, J.F., Laporte, G., Savelsbergh, M.W., et al. 2002. Vehicle Routing. Handbook on OR & MS.
[6] Gendreau, M. Hertz, A. G. Laporte. 1994. A Tabu Search Heuristic for the Vehicle Routing Problem. Management Science.
[7] Glover, F & Kochenberger, G.A. (Eds). 2003. Handbook of Metaheuristics. Dordrecht: Kluwer Academic Publisher.
[8] Glover, F & Laguna, M. 1997. Tabu Search. Massachusetts: Kluwer Academic Publisher.
[9] Glover, F & Marti, R. 2006. Metaheuristic Produres for Training Neural Networks. Alba and Marti (Eds.).Springer.
[10] Gooddairrie, Edgar G. & Parmenter, Michael M. 2002. Discrete Mathematics with Graph Theory Second Edition. United States of America: Prentice-Hall, Inc.
[11] Heyzer, Jay & Barry, Render. 2005. Operation management, 7 Th edition. Jakarta: Penerbit salemba empat.
[12] Kallehauge, B., J. Larsen, dan O.B.G. Marsen. 2001. Lagrangean duality applied on vehicle routing problem with time windows. Technical Report. IMM. Technical University of Denmark.
[13] Kismono, Gugup. 2001. Pengantar bisnis, Edisi pertama. Yogyakarta: BPFE. Indonesia.
[14] Kusumadewi, S., & Purnomo, H. 2005. Penyelesaian Masalah Optimasi dengan Teknik-Teknik Heuristik. Yogyakarta: Graha Ilmu. Indonesia.
[15] Manongga, Danny dan Nataliani, Yessica. 2013. Matematika Diskrit. Jakarta: Prenadamedia Group. Indonesia.
[16] Nasution, Arman & Prasetyawan, Yudha. 2008. Perencanaan Dan Pengendalian Produksi. Yogyakarta: Graha Ilmu Indonesia.
[17] Nurmatias. 2010. Penentuan Stock Material Chemical dengan Simulasi Monte Carlo. Jurnal Universitas Islam Indonesia. Yogyakarta.
[18] Pakpahan, Efendi. 2009. Manajemen Pemasaran. Yogyakarta: BPFE. Indonesia.
[19] Parwadi, Moengin. 2011. Metode Optimasi. Bandung: Muara Indah. Indonesia.
[20] Raditya, Aji. 2009. Penggunaan Metode Heuristik dalam Permasalahan Vehicle Routing Problem dan Implementasinya di PT Nippon Indosari Corpindo.Skripsi, tidak diterbitkan, Institut Pertanian Bogor.
[21] Rahmat, Basuki. 2011. Perbandingan Genetic Algorithm, Multiple Ant Colony System, dan Tabu Search untuk Penyelesaian Vehicle Routing Problem With Time Windows (VRPTW).Jawa Timur.
[22] Rosen, Kenneth H. 2012. Discrete Mathematics and Its Application Seventh Edition. NewYork: Mc-Graw-Hill.
[23] Salaki, D.T. 2009. Penyelesaian vehicle routing problem menggunakan beberapa metode heuristic konstruktif. Tesis. Bogor. Sekolah pasca sarjana institute pertanian.
[24] Siregar, W.D. 2012. Analisis kualitas Fisik, Biologi, dan Kimia pada Air Minum dalam Kemasan barbagai merk yang dijual di Kota Medan. Fakultas kesehatan masyarakat. Universitas Sumatera utara. Medan.
[25] Solomon, M & Desrosiers, J. 1988. Time window constrained routing and scheduling Problems.Transportation science.
[26] Sulistiono. 2015. Rancang Bangun Vehicle Routing Problem Menggunakan Algoritma Tabu Search. Skripsi, tidak diterbitkan. UIN Sunan Kalijaga: Yogyakarta.
[27] Suyanto. 2010. Algoritma Optimasi Deterministik atau Probabilitik. Yogyakarta: Graha Ilmu.
[28] Taha, H. A. 2003. Operations Research: An Introduction seventh Edition. Prentice Hall, Inc.
[29] Tarantilis, C. D., Ioannou, G., Kiranoudis, C. T., dan Prasdacos, G. P. 2005.Solving the open vehicle routing problem via single parameter meta-heuristic algorithm. Journal of the Operational research Society.
[30] Tjiptono, Fandy. 2008. Strategi Pemasaran. Yogyakarta: Penerbit Andi. Indonesia.
[31] Tonci Caric, Hrvoje Gold. 2008. Vehicle Routing Problem. University of Zagreb: In-teh Croatia.
[32] Toth, P., & Vigo. D. 2002. Vehicle Routing Problem, Methods, and Applications Second Edition. Philadelphia: Society for Industrial and Applied Mathematics.
Published
2018-04-30
Section
Articles