Analisis Sensitivitas Model Penularan Koinfeksi COVID-19 dan HIV/AIDS

Authors

DOI:

https://doi.org/10.14421/fourier.2024.131.52-64

Keywords:

Koinfeksi COVID-19 HIV, Analisis sensitivitas, Bilangan reproduksi dasar

Abstract

Penularan koinfeksi COVID-19 dan HIV/AIDS merupakan masalah kesehatan masyarakat yang menjadi pusat perhatian terutama di negara-negara berkembang di dunia. Artikel ini merupakan salah satu kajian untuk mempelajari kejadian penularan koinfeksi COVID-19 dan HIV/AIDS.  Model yang digunakan terdiri dari delapan kompartemen antara lain: rentan, vaksinasi, COVID-19, infeksi COVID-19, infeksi HIV, AIDS, koinfeksi COVID-19 dan HIV, koinfeksi COVID-19 dan AIDS.  Analisis kestabilan titik ekuilibrium model dan kontrol optimalnya telah dibahas sebelumnya. Hasil dari analisis tersebut digunakan sebagai landasan teori untuk melakukan analisis sensitivitas parameter modelnya. Oleh karena itu, tujuan penelitian ini adalah menentukan parameter model yang paling sensitif terhadap kasus penularan koinfeksi COVID-19 dan HIV/AIDS. Metode studi literatur digunakan untuk mendukung analisis sensitivitas parameter model. Simulasi modelnya menggunakan software Maple dengan data sekunder. Parameter laju kontak COVID-19, laju kontak HIV, laju kesembuhan infeksi COVID-19 dan angka kematian akibat AIDS merupakan parameter yang paling sensitif terhadap kasus penularan koinfeksi COVID-19 dan HIV/AIDS. Parameter laju kontak COVID-19 dan laju kontak HIV adalah parameter yang paling sensitif terhadap peningkatan kasus penularan koinfeksi COVID-19 dan HIV/AIDS karena nilai indeks sensitivitasnya tertinggi dibandingkan parameter lainnya. Sedangkan, parameter laju kesembuhan infeksi COVID-19 dan angka kematian akibat AIDS memiliki nilai indeks sensitivitas terendah dibandingkan parameter lainnya. Parameter laju kesembuhan infeksi COVID-19 dan angka kematian akibat AIDS adalah parameter yang paling sensitif terhadap penurunan kasus penularan koinfeksi COVID-19 dan HIV/AIDS.

Downloads

Download data is not yet available.

Author Biography

Joko Harianto, UNIVERSITAS CENDERAWASIH

Department of Mathematics 

References

M. Martcheva, An Introduction to Mathematical Epidemiology, New York: Springer, 2015.

S. W. Teklu, “Mathematical analysis of the transmission dynamics of COVID-19 infection in the presence of intervention strategies,” Journal of Biological Dynamics, vol. 16, no. 1, 2022.

N. Ringa, M. L. Diagne, H. Rwezaura, A. Omame, S. Y. Tchoumi, and J. M. Tchuenche, “HIV and COVID-19 co-infection: A mathematical model and optimal control,” Informatics Medicine Unlocked, vol. 31, 2022.

A. Babaei, H. Jafari, and A. Liya, “Mathematical models of HIV/AIDS and drug addiction in prisons,” European Physical Journal Plus, vol. 135, no. 5, 2020.

I. M. Wangari, S. Sewe, G. Kimathi, M. Wainaina, V. Kitetu, and W. Kaluki, “Mathematical Modelling of COVID-19 Transmission in Kenya: A Model with Reinfection Transmission Mechanism,” Computational and Mathematical Methods in Medicine, vol. 2021, 2021.

Y. J. Baek et al., “A mathematical model of COVID-19 transmission in a tertiary hospital and assessment of the effects of different intervention strategies,” PLoS One, vol. 15, no. 10, 2020.

S. S. Musa et al., “Transmission dynamics of SARS-CoV-2: A modeling analysis with high-and-moderate risk populations,” Results in Physics, vol. 26, 2021.

L. Cirrincione et al., “COVID-19 Pandemic: Prevention and protection measures to be adopted at the workplace,” Sustainability, vol. 12, no. 9, 2020.

P. Riyapan, S. E. Shuaib, and A. Intarasit, “A mathematical model of COVID-19 pandemic: A case study of Bangkok, Thailand,” Computational and Mathematical Methods in Medicine, vol. 2021, 2021.

O. Daniel Deborah, “Mathematical Model for the Transmission of Covid-19 with Nonlinear Forces of Infection and the Need for Prevention Measure in Nigeria,” Journal Infectious Diseases and Epidemiology, vol. 6, no. 5, 2020.

J. Y. T. Mugisha, J. Ssebuliba, J. N. Nakakawa, C. R. Kikawa, and A. Ssematimba, “Mathematical modeling of COVID-19 transmission dynamics in Uganda: Implications of complacency and early easing of lockdown,” PLoS One, vol. 16, no. 2 February, 2021.

S. W. Teklu and T. T. Mekonnen, “HIV/AIDS-Pneumonia Coinfection Model with Treatment at Each Infection Stage: Mathematical Analysis and Numerical Simulation,” Journal of Applied Mathematics, vol. 2021, 2021.

S. W. Teklu and K. P. Rao, “HIV/AIDS-Pneumonia Codynamics Model Analysis with Vaccination and Treatment,” Computational and Mathematical Methods in Medicine, vol. 2022, 2022.

S. R. Bandekar and M. Ghosh, “A co-infection model on TB - COVID-19 with optimal control and sensitivity analysis,” Mathematics and Computers in Simulation, vol. 200, 2022.

I. M. Hezam, A. Foul, and A. Alrasheedi, “A dynamic optimal control model for COVID-19 and cholera co-infection in Yemen,” Advances in Difference Equations, vol. 2021, no. 1, 2021.

P. Ssentongo et al., “Epidemiology and outcomes of COVID-19 in HIV-infected individuals: a systematic review and meta-analysis,” Scientific Reports, vol. 11, no. 1, 2021.

T. M. Chen, J. Rui, Q. P. Wang, Z. Y. Zhao, J. A. Cui, and L. Yin, “A mathematical model for simulating the phase-based transmissibility of a novel coronavirus,” Infectious Diseases of Poverty, vol. 9, no. 1, 2020.

D. Sun, X. Long, and J. Liu, “Modeling the COVID-19 Epidemic With Multi-Population and Control Strategies in the United States,” Frontiers in Public Health, vol. 9, 2022.

R. Takele, “Stochastic modelling for predicting COVID-19 prevalence in East Africa Countries,” Infectious Diseases Modelling, vol. 5, 2020.

A. Tanvi, R. Aggarwal, and Y. A. Raj, “A fractional order HIV-TB co-infection model in the presence of exogenous reinfection and recurrent TB,” Nonlinear Dynamics, vol. 104, no. 4, 2021.

M. Aslam et al., “A fractional order HIV/AIDS epidemic model with Mittag-Leffler kernel,” Advances in Difference Equations, vol. 2021, no. 1, 2021.

I. Ahmed, E. F. Doungmo Goufo, A. Yusuf, P. Kumam, P. Chaipanya, and K. Nonlaopon, “An epidemic prediction from analysis of a combined HIV-COVID-19 co-infection model via ABC-fractional operator,” Alexandria Engineering Journal, vol. 60, no. 3, 2021.

A. Zeb, E. Alzahrani, V. S. Erturk, and G. Zaman, “Mathematical Model for Coronavirus Disease 2019 (COVID-19) Containing Isolation Class,” Biomed Research International, vol. 2020, 2020.

S. W. Teklu and B. B. Terefe, “COVID-19 and syphilis co-dynamic analysis using mathematical modeling approach,” Frontiers in Applied Mathematics and Statistics, vol. 8, 2023.

S. Y. Tchoumi, M. L. Diagne, H. Rwezaura, and J. M. Tchuenche, “Malaria and COVID-19 co-dynamics: A mathematical model and optimal control,” Applied Mathematical Modelling, vol. 99, 2021.

A. Omame et al., “Analysis of COVID-19 and comorbidity co-infection model with optimal control,” Optimal Control Applications and Methods, vol. 42, no. 6, 2021.

T. D. Keno, O. D. Makinde, and L. L. Obsu, “Optimal control and cost effectiveness analysis of SIRS malaria disease model with temperature variability factor,” Journal of Mathematical and Fundamental Sciences, vol. 53, no. 1, 2021.

T. D. Keno, L. B. Dano, and O. D. Makinde, “Modeling and Optimal Control Analysis for Malaria Transmission with Role of Climate Variability,” Computational and Mathematical Methods, vol. 2022, 2022.

M. S. Goudiaby, L. D. Gning, M. L. Diagne, B. M. Dia, H. Rwezaura, and J. M. Tchuenche, “Optimal control analysis of a COVID-19 and tuberculosis co-dynamics model,” Informatics Medicine Unlocked, vol. 28, 2022.

J. K. K. Asamoah et al., “Optimal control and comprehensive cost-effectiveness analysis for COVID-19,” Results in Physics, vol. 33, 2022.

K. O. Okosun, O. D. Makinde, and I. Takaidza, “Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives,” Applied Mathematical Modelling, vol. 37, no. 6, 2013.

M. Rabiu, R. Willie, and N. Parumasur, “Optimal Control Strategies and Sensitivity Analysis of an HIV/AIDS-Resistant Model with Behavior Change,” Acta Biotheoretica, vol. 69, no. 4, 2021.

P. Van Den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, no. 1, pp. 29–48, 2002.

Downloads

Published

2024-04-30

How to Cite

Harianto, J., Abraham, & Kawuwung, W. B. (2024). Analisis Sensitivitas Model Penularan Koinfeksi COVID-19 dan HIV/AIDS. Jurnal Fourier, 13(1), 52–64. https://doi.org/10.14421/fourier.2024.131.52-64

Issue

Section

Articles