Sturuktur Graf Fuzzy dan Aplikasinya pada Pengambilan Keputusan dalam Identifikasi Layanan Perjalanan
DOI:
https://doi.org/10.14421/fourier.2024.131.20-29Keywords:
struktur graf fuzzy, semi strong min-product, pengambilan keputusanAbstract
Struktur graf fuzzy adalah penggabungan dari struktur graf dan graf fuzzy. Penelitian ini membahas beberapa pengertian dan sifat dari struktur graf fuzzy diantaranya struktur graf fuzzy komplit dan kuat, struktur graf fuzzy terhubung, serta struktur graf fuzzy reguler. Lebih lanjut, dibentuk semi strong min-product dari dua struktur graf fuzzy dan beberapa teoremanya dari semi strong min-product yang dihasilkan. Selanjutnya disajikan aplikasi dari struktur graf fuzzy dalam pengambilan keputusan, yaitu pengambilan keputusan dalam identifikasi layanan perjalanan, yang didasarkan pada tarif harga dari masing-masing agen. Dengan menerapkan algoritma yang telah disusun disusun dapat ditentukan layanan perjalanan dari satu kota ke kota lain, berdasarkan harga tiket terendah.
[
A fuzzy graph structure is an extension of graph structure and fuzzy graph. This research discusses several definitions and properties of the fuzzy graph structure including complete and strong fuzzy graph structure, connected fuzzy graph structure, and regular fuzzy graph structure. Furthermore, the semi strong min-product of two fuzzy graph structures can be formed, then some theorems are discussed for semi strong min-product. Furthermore, the application of the fuzzy graph structure in decision making is presented, specially decision making for the identification of travel services, which is based on the price rates of each agent. Through the algorithm, it is possible to determine the travel service from one city to another, based on the lowest ticket price.
]
Downloads
References
L. A. Zadeh, “Fuzzy Sets,” Inf. Control 8, vol. 353, pp. 1562–1569, 2014, doi: 10.1061/9780784413616.194.
L. Tyagi and S. Singal, “Application of Fuzzy Logic Control Systems in Military Platforms,” in 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), IEEE, Jan. 2019, pp. 397–402. doi: 10.1109/CONFLUENCE.2019.8776955.
C. G. Amza and D. T. Cicic, “Industrial Image Processing Using Fuzzy-logic,” Procedia Eng., vol. 100, pp. 492–498, 2015, doi: 10.1016/j.proeng.2015.01.404.
Y. Anggara and A. Munandar, “Implementation of Hybrid RNN-ANFIS on Forecasting Jakarta Islamic Index,” Jambura J. Math., vol. 5, no. 2, pp. 419–430, Aug. 2023, doi: 10.34312/jjom.v5i2.20407.
A. Kauffman, “Introduction a la Theorie des Sous-emsembles Flous 1,” Masson Cie, Paris, 1973.
A. Rosenfeld, “FUZZY GRAPHS,” Fuzzy Sets their Appl. to Cogn. Decis. Process., pp. 77–95, 1975, doi: 10.1016/b978-0-12-775260-0.50008-6.
A. N. Gani and K. Radha, “On Regular Fuzzy Graphs,” J. Phys. Sci., vol. 12, pp. 33–40, 2008.
A. N. Gani and K. Radha, “The degree of a vertex in some fuzzy graphs,” Int. J. Algorithms, Comput. Math., vol. 2, no. 3, pp. 107–116, 2009.
P. Bhattacharya, “Some remarks on fuzzy graphs,” Pattern Recognit. Lett., vol. 6, no. 5, pp. 297–302, 1987, doi: 10.1016/0167-8655(87)90012-2.
J. N. Mordeson and P. Chang-Shyh, “Operations on fuzzy graphs,” Inf. Sci. (Ny)., vol. 79, no. 3–4, pp. 159–170, 1994, doi: 10.1016/0020-0255(94)90116-3.
N. Gani, “Order and size in fuzzy Graph,” no. May, 2015, doi: 10.13140/2.1.3884.0969.
M. L. Prakasta and A. Munandar, “Pewarnaan Fraksional Fuzzy pada Graf Fuzzy Beserta Aplikasinya dalam Penjadwalan Ujian,” J. Fourier, vol. 12, no. 1, pp. 1–9, Apr. 2023, doi: 10.14421/fourier.2023.121.1-9.
E. Sampathkumar, “Generalized Graph Structures,” Bull. Kerala Math. Assoc., vol. 3, no. 2, pp. 67–123, 2006.
T. Dinesh and T. V. Ramakrishnan, “On generalised fuzzy graph structures,” Appl. Math. Sci., vol. 5, no. 1–4, pp. 173–180, 2011.
M. Sitara, M. Akram, and M. Y. Bhatti, “Fuzzy graph structures with application,” Mathematics, vol. 7, no. 1, 2019, doi: 10.3390/math7010063.
M. Akram, R. Akmal, and N. Alshehri, “On m-polar fuzzy graph structures,” SpringerPlus, vol. 5, no. 1. 2016. doi: 10.1186/s40064-016-3066-8.
M. Akram and M. Sitara, “Certain fuzzy graph structures,” J. Appl. Math. Comput., vol. 61, no. 1–2, pp. 25–56, 2019, doi: 10.1007/s12190-019-01237-2.
A. Munandar, Pengantar Matematika Diskrit dan Teori Graf. Deepulish, 2022.
L. A. Zadeh, “Similarity relations and fuzzy orderings,” Inf. Sci. (Ny)., vol. 3, no. 2, pp. 177–200, 1971, doi: 10.1016/S0020-0255(71)80005-1.
T. Dinesh, “A study on graph structures, incidence algebras and their fuzzy analogues,” Ph.D. Thesis,Kannur Univ. Kerala,India, no. June, 2012.
M. Pal, S. Samanta, and G. Ghorai, Modern Trends in Fuzzy Graph Theory. 2020. doi: 10.1007/978-981-15-8803-7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ilma Nindita Ramadhani, Arif Munandar
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.