Perbandingan Ekstraksi Fitur Untuk Klasifikasi COVID-19, MERS, dan SARS Menggunakan Algoritma Extreme Learning Machine
DOI:
https://doi.org/10.14421/fourier.2024.131.30-41Keywords:
ELM, GLCM, GLDM, Virus CoronaAbstract
Pada tahun 2019, terjadi kemunculan suatu wabah penyakit COVID-19. Wabah penyakit tersebut telah mengguncang dunia sehingga menyebabkan pandemi secara global. Selain COVID-19, terdapat dua wabah penyakit lain juga diakibatkan oleh virus corona yaitu MERS (Middle East Respiratory Syndrome) dan SARS (Severe Acute Respiratory Syndrome) yang sudah menjadi ancaman serius pada beberapa dekade terakhir. Ketiga wabah penyakit tersebut menyebabkan jutaan kasus serta ribuan orang yang meninggal di seluruh dunia. Berdasarkan permasalahan tersebut, perlu adanya penelitian yang dilakukan untuk klasifikasi penyakit COVID-19, MERS, dan SARS berdasarkan hasil pemeriksaan X-ray menggunakan perbandingan ekstraksi fitur GLCM (Gray Level Co-occurrence Matrix) dan GLDM (Gray Level Difference Matrix) serta klasifikasi ELM (Extreme Learning Machine). Pada penelitian ini menggunakan beberapa parameter uji coba diantaranya yaitu arah sudut, jumlah pada k-fold, serta jumlah hidden node. Hasil terbaik pada penelitian ini diperoleh menggunakan metode ekstraksi fitur GLDM dengan uji coba pada sudut , k-fold 10, serta hidden node 25 yang menghasilkan akurasi, sensitivitas, dan spesifisitas masing-masing sebesar 100% dengan waktu yang dibutuhkan yaitu 0.00042 detik. Sehingga, dapat disimpulkan bahwa hasil ekstraksi fitur GLDM lebih unggul daripada ekstraksi fitur GLCM.
Downloads
References
A. Simajuntak, I. Kusadhiani, dan V. Z. Latuconsina, “Hubungan Jumlah Trombosit Dengan Severitas Klinis Pasien COVID-19 Pada Tiga Rumah Sakit Rujukan COVID-19 di Kota Ambon Tahun 2020,” MoluccaMedica, vol. 15, no. 2, 2022, doi: 10.30598/molmed.2022.v15.i2.138.
Y. F. Riti dan S. S. Tandjung, “Klasifikasi Covid-19 Pada Citra CT Scans Paru-Paru Menggunakan Metode Convolution Neural Network,” Progresif J. Ilm. Komput., vol. 18, no. 1, hal. 91, 2022, doi: 10.35889/progresif.v18i1.784.
T. T. Yao, J. D. Qian, W. Y. Zhu, Y. Wang, dan G. Q. Wang, “A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus—A possible reference for coronavirus disease-19 treatment option,” J. Med. Virol., vol. 92, no. 6, hal. 556–563, 2020, doi: 10.1002/jmv.25729.
X.-Y. Zhang et al., “Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2,” MedNexus, 2020.
B. N. Mohammed, F. H. Al-Mukhtar, R. Z. Yousif, dan Y. S. Almashhadani, “Automatic Classification of Covid-19 Chest X-Ray Images Using Local Binary Pattern and Binary Particle Swarm Optimization for Feature Selection,” Cihan Univ. Sci. J., vol. 5, no. 2, hal. 46–51, 2021.
A. A. Nurfitri, A. I. Kaparang, M. T. Hidayat, A. B. Kaswar, dan D. D. Andayani, “Classification of the Level of Sugar Content in Papaya Fruit Based on Color Features Using Artificial Neural Network,” JUTIF (Jurnal Tek. Inform., vol. 4, no. 6, 2023.
A. R. Damanik, S. Annisa, A. I. Rafeli, A. S. Liana, dan D. S. Prasvita, “Klasifikasi Jenis Buah Cherry Menggunakan Support Vector Machine (SVM) Berdasarkan Tekstur dan Warna Citra,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., 2022.
C. Gupta, N. K. Gondhi, dan P. K. Lehana, “Gray Level Co-Occurrence Matrix (GLCM) Parameters Analysis for Pyoderma Image Variants,” J. Comput. Theor. Nanosci., vol. 17, hal. 1, 2020.
R. L. Hasanah, “Identifikasi Jenis Acne Vulgaris pada Citra Jerawat Wajah dengan Ekstraksi Fitur GLCM dan Algoritma Extreme Learning Machine,” 2020.
E. Elfira, W. Priharti, dan D. Rahmawati, “Comparison of GLCM and First Order Feature Extraction Methods for Classification of Mammogram Images,” J. Teknokes, vol. 15, no. 4, hal. 197–205, 2022, doi: 10.35882/teknokes.v15i4.458.
A. Simajuntak, I. Kusadhiani, dan V. Z. Latuconsina, “Hubungan Jumlah Trombosit Dengan Severitas Klinis Pasien COVID-19 Pada Tiga Rumah Sakit Rujukan COVID-19 di Kota Ambon Tahun 2020,” MoluccaMedica, vol. 15, no. 2, 2022, doi: 10.30598/molmed.2022.v15.i2.138.
Y. F. Riti dan S. S. Tandjung, “Klasifikasi Covid-19 Pada Citra CT Scans Paru-Paru Menggunakan Metode Convolution Neural Network,” Progresif J. Ilm. Komput., vol. 18, no. 1, hal. 91, 2022, doi: 10.35889/progresif.v18i1.784.
T. T. Yao, J. D. Qian, W. Y. Zhu, Y. Wang, dan G. Q. Wang, “A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus—A possible reference for coronavirus disease-19 treatment option,” J. Med. Virol., vol. 92, no. 6, hal. 556–563, 2020, doi: 10.1002/jmv.25729.
X.-Y. Zhang et al., “Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2,” MedNexus, 2020.
B. N. Mohammed, F. H. Al-Mukhtar, R. Z. Yousif, dan Y. S. Almashhadani, “Automatic Classification of Covid-19 Chest X-Ray Images Using Local Binary Pattern and Binary Particle Swarm Optimization for Feature Selection,” Cihan Univ. Sci. J., vol. 5, no. 2, hal. 46–51, 2021.
A. A. Nurfitri, A. I. Kaparang, M. T. Hidayat, A. B. Kaswar, dan D. D. Andayani, “Classification of the Level of Sugar Content in Papaya Fruit Based on Color Features Using Artificial Neural Network,” JUTIF (Jurnal Tek. Inform., vol. 4, no. 6, 2023.
A. R. Damanik, S. Annisa, A. I. Rafeli, A. S. Liana, dan D. S. Prasvita, “Klasifikasi Jenis Buah Cherry Menggunakan Support Vector Machine (SVM) Berdasarkan Tekstur dan Warna Citra,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., 2022.
C. Gupta, N. K. Gondhi, dan P. K. Lehana, “Gray Level Co-Occurrence Matrix (GLCM) Parameters Analysis for Pyoderma Image Variants,” J. Comput. Theor. Nanosci., vol. 17, hal. 1, 2020.
R. L. Hasanah, “Identifikasi Jenis Acne Vulgaris pada Citra Jerawat Wajah dengan Ekstraksi Fitur GLCM dan Algoritma Extreme Learning Machine,” 2020.
E. Elfira, W. Priharti, dan D. Rahmawati, “Comparison of GLCM and First Order Feature Extraction Methods for Classification of Mammogram Images,” J. Teknokes, vol. 15, no. 4, hal. 197–205, 2022, doi: 10.35882/teknokes.v15i4.458.
B. Sri Aprillia, A. Rizal, dan M. A. Geraldy Fauzi, “Grey Level Differences Matrix for Alcoholic EEG Signal Classification,” JOIV Int. J. Informatics Vis., vol. 8, no. 1, hal. 26, 2024, doi: 10.62527/joiv.8.1.2602.
E. B. Talal dan E. Thabet, “Diabetic Retinopathy Recognition System based on GLDM Features and FeedForward Neural Network Classifier,” Al-Qadisiyah J. Pure Sci., vol. 27, no. 1, 2022.
D. Kumar, T. Roshni, A. Singh, M. K. Jha, dan P. Samui, “Predicting groundwater depth fluctuations using deep learning, extreme learning machine and Gaussian process: a comparative study,” Earth Sci. Informatics, vol. 13, no. 4, hal. 1237–1250, 2020, doi: 10.1007/s12145-020-00508-y.
E. Budianita, F. Syafria, dan I. Afriyanti, “Prediksi Jumlah Perceraian Menggunakan Metode Extreme Learning Machine (ELM),” J. Inf. Syst. Res., vol. 4, no. 4, hal. 1448–1454, 2023, doi: 10.47065/josh.v4i4.3581.
R. R. Wahid, F. T. Anggraeny, dan B. Nugroho, “Implementasi Metode Extreme Learning Machine untuk Klasifikasi Tumor Otak pada Citra Magnetic Resonance Imaging,” Pros. Semin. Nas. Inform. Bela Negara, vol. 1, hal. 16–20, 2020, doi: 10.33005/santika.v1i0.45.
H. Pratiwi dan K. Harianto, “Perbandingan Algoritma ELM Dan Backpropagation Terhadap Prestasi Akademik Mahasiswa,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 3, no. 2, hal. 282, 2019, doi: 10.30645/j-sakti.v3i2.147.
J. F. Azzahra, H. Sumarti, dan H. H. Kusuma, “Klasifikasi Kasus COVID-19 dan SARS Berbasis Ciri Tekstur Menggunakan Metode Multi-Layer Perceptron,” J. Fis., vol. 12, no. 1, hal. 16–27, 2022, doi: 10.15294/jf.v12i1.35685.
J. Kalyani dan M. Chakraborty, “Contrast Enhancement of MRI Images using Histogram Equalization Techniques,” 2020 Int. Conf. Comput. Electr. Commun. Eng., hal. 1–5, 2020.
F. M. Hana dan I. D. Maulida, “Analysis of contrast limited adaptive histogram equalization (CLAHE) parameters on finger knuckle print identification,” J. Phys. Conf. Ser., vol. 1764, no. 1, 2021, doi: 10.1088/1742-6596/1764/1/012049.
D. C. R. Novitasari, A. Z. Foeady, M. Thohir, A. Z. Arifin, K. Niam, dan A. H. Asyhar, “Automatic Approach for Cervical Cancer Detection Based on Deep Belief Network (DBN) Using Colposcopy Data,” 2020 Int. Conf. Artif. Intell. Inf. Commun. ICAIIC 2020, hal. 415–420, 2020, doi: 10.1109/ICAIIC48513.2020.9065196.
O. Appiah, M. Asante, dan J. B. Hayfron-Acquah, “Improved approximated median filter algorithm for real-time computer vision applications,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 3, hal. 782–792, 2022.
V. U. M. Maksum, D. C. R. Novitasari, dan A. Hamid, “Image X-Ray Classification for COVID-19 Detection Using GCLM-ELM,” J. Mat. MANTIK, vol. 7, no. 1, hal. 74–85, 2021, doi: 10.15642/mantik.2021.7.1.74-85.
F. R. Hendri dan F. Utaminingrum, “Cancer Mammography Detection Using Four Features Extractions on Gray Level Co-occurrence Matrix with SVM Kernel Analysis,” Proc. 2nd Int. Conf. Electron. Biomed. Eng. Heal. Informatics, 2022.
E. Barges dan E. Thabet, “GLDM and Tamura features based KNN and particle swarm optimization for automatic diabetic retinopathy recognition system,” Multimed. Tools Appl., vol. 82, hal. 271–295, 2023.
N. G. Ramadhan dan A. Khoirunnisa, “Klasifikasi Data Malaria Menggunakan Metode Support Vector Machine,” J. Media Inform. Budidarma, vol. 5, no. 4, hal. 1580, 2021, doi: 10.30865/mib.v5i4.3347.
B. Y. Phiadelvira, D. Z. Haq, D. C. R. Novitasari, dan F. Setiawan, “Prediksi Besar Daya Listrik Tenaga Gelombang Laut Metode Oscillating Water Coloumn (PLTGL-OWC) di Banyuwangi Menggunakan Extreme Learning Machine (ELM),” Unnes J. Math., vol. 11, no. 1, hal. 1–7, 2022, doi: 10.15294/ujm.v11i1.50967.
W. T. Puspitasari, D. Z. Haq, dan D. C. R. Novitasari, “Identifikasi Leukemia Berdasarkan Analisis Tekstur Citra Darah Tepi Mikroskopis Menggunakan Jaringan Syaraf Tiruan Feed-Forward,” Tek. Komput. J. Apl., vol. 11., no. 3, hal. 215–225, 2022.
A. Simajuntak, I. Kusadhiani, dan V. Z. Latuconsina, “Hubungan Jumlah Trombosit Dengan Severitas Klinis Pasien COVID-19 Pada Tiga Rumah Sakit Rujukan COVID-19 di Kota Ambon Tahun 2020,” MoluccaMedica, vol. 15, no. 2, 2022, doi: 10.30598/molmed.2022.v15.i2.138.
Y. F. Riti dan S. S. Tandjung, “Klasifikasi Covid-19 Pada Citra CT Scans Paru-Paru Menggunakan Metode Convolution Neural Network,” Progresif J. Ilm. Komput., vol. 18, no. 1, hal. 91, 2022, doi: 10.35889/progresif.v18i1.784.
T. T. Yao, J. D. Qian, W. Y. Zhu, Y. Wang, dan G. Q. Wang, “A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus—A possible reference for coronavirus disease-19 treatment option,” J. Med. Virol., vol. 92, no. 6, hal. 556–563, 2020, doi: 10.1002/jmv.25729.
X.-Y. Zhang et al., “Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2,” MedNexus, 2020.
B. N. Mohammed, F. H. Al-Mukhtar, R. Z. Yousif, dan Y. S. Almashhadani, “Automatic Classification of Covid-19 Chest X-Ray Images Using Local Binary Pattern and Binary Particle Swarm Optimization for Feature Selection,” Cihan Univ. Sci. J., vol. 5, no. 2, hal. 46–51, 2021.
A. A. Nurfitri, A. I. Kaparang, M. T. Hidayat, A. B. Kaswar, dan D. D. Andayani, “Classification of the Level of Sugar Content in Papaya Fruit Based on Color Features Using Artificial Neural Network,” JUTIF (Jurnal Tek. Inform., vol. 4, no. 6, 2023.
A. R. Damanik, S. Annisa, A. I. Rafeli, A. S. Liana, dan D. S. Prasvita, “Klasifikasi Jenis Buah Cherry Menggunakan Support Vector Machine (SVM) Berdasarkan Tekstur dan Warna Citra,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., 2022.
C. Gupta, N. K. Gondhi, dan P. K. Lehana, “Gray Level Co-Occurrence Matrix (GLCM) Parameters Analysis for Pyoderma Image Variants,” J. Comput. Theor. Nanosci., vol. 17, hal. 1, 2020.
R. L. Hasanah, “Identifikasi Jenis Acne Vulgaris pada Citra Jerawat Wajah dengan Ekstraksi Fitur GLCM dan Algoritma Extreme Learning Machine,” 2020.
E. Elfira, W. Priharti, dan D. Rahmawati, “Comparison of GLCM and First Order Feature Extraction Methods for Classification of Mammogram Images,” J. Teknokes, vol. 15, no. 4, hal. 197–205, 2022, doi: 10.35882/teknokes.v15i4.458.
B. Sri Aprillia, A. Rizal, dan M. A. Geraldy Fauzi, “Grey Level Differences Matrix for Alcoholic EEG Signal Classification,” JOIV Int. J. Informatics Vis., vol. 8, no. 1, hal. 26, 2024, doi: 10.62527/joiv.8.1.2602.
E. B. Talal dan E. Thabet, “Diabetic Retinopathy Recognition System based on GLDM Features and FeedForward Neural Network Classifier,” Al-Qadisiyah J. Pure Sci., vol. 27, no. 1, 2022.
D. Kumar, T. Roshni, A. Singh, M. K. Jha, dan P. Samui, “Predicting groundwater depth fluctuations using deep learning, extreme learning machine and Gaussian process: a comparative study,” Earth Sci. Informatics, vol. 13, no. 4, hal. 1237–1250, 2020, doi: 10.1007/s12145-020-00508-y.
E. Budianita, F. Syafria, dan I. Afriyanti, “Prediksi Jumlah Perceraian Menggunakan Metode Extreme Learning Machine (ELM),” J. Inf. Syst. Res., vol. 4, no. 4, hal. 1448–1454, 2023, doi: 10.47065/josh.v4i4.3581.
R. R. Wahid, F. T. Anggraeny, dan B. Nugroho, “Implementasi Metode Extreme Learning Machine untuk Klasifikasi Tumor Otak pada Citra Magnetic Resonance Imaging,” Pros. Semin. Nas. Inform. Bela Negara, vol. 1, hal. 16–20, 2020, doi: 10.33005/santika.v1i0.45.
H. Pratiwi dan K. Harianto, “Perbandingan Algoritma ELM Dan Backpropagation Terhadap Prestasi Akademik Mahasiswa,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 3, no. 2, hal. 282, 2019, doi: 10.30645/j-sakti.v3i2.147.
J. F. Azzahra, H. Sumarti, dan H. H. Kusuma, “Klasifikasi Kasus COVID-19 dan SARS Berbasis Ciri Tekstur Menggunakan Metode Multi-Layer Perceptron,” J. Fis., vol. 12, no. 1, hal. 16–27, 2022, doi: 10.15294/jf.v12i1.35685.
J. Kalyani dan M. Chakraborty, “Contrast Enhancement of MRI Images using Histogram Equalization Techniques,” 2020 Int. Conf. Comput. Electr. Commun. Eng., hal. 1–5, 2020.
F. M. Hana dan I. D. Maulida, “Analysis of contrast limited adaptive histogram equalization (CLAHE) parameters on finger knuckle print identification,” J. Phys. Conf. Ser., vol. 1764, no. 1, 2021, doi: 10.1088/1742-6596/1764/1/012049.
D. C. R. Novitasari, A. Z. Foeady, M. Thohir, A. Z. Arifin, K. Niam, dan A. H. Asyhar, “Automatic Approach for Cervical Cancer Detection Based on Deep Belief Network (DBN) Using Colposcopy Data,” 2020 Int. Conf. Artif. Intell. Inf. Commun. ICAIIC 2020, hal. 415–420, 2020, doi: 10.1109/ICAIIC48513.2020.9065196.
O. Appiah, M. Asante, dan J. B. Hayfron-Acquah, “Improved approximated median filter algorithm for real-time computer vision applications,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 3, hal. 782–792, 2022.
V. U. M. Maksum, D. C. R. Novitasari, dan A. Hamid, “Image X-Ray Classification for COVID-19 Detection Using GCLM-ELM,” J. Mat. MANTIK, vol. 7, no. 1, hal. 74–85, 2021, doi: 10.15642/mantik.2021.7.1.74-85.
F. R. Hendri dan F. Utaminingrum, “Cancer Mammography Detection Using Four Features Extractions on Gray Level Co-occurrence Matrix with SVM Kernel Analysis,” Proc. 2nd Int. Conf. Electron. Biomed. Eng. Heal. Informatics, 2022.
E. Barges dan E. Thabet, “GLDM and Tamura features based KNN and particle swarm optimization for automatic diabetic retinopathy recognition system,” Multimed. Tools Appl., vol. 82, hal. 271–295, 2023.
N. G. Ramadhan dan A. Khoirunnisa, “Klasifikasi Data Malaria Menggunakan Metode Support Vector Machine,” J. Media Inform. Budidarma, vol. 5, no. 4, hal. 1580, 2021, doi: 10.30865/mib.v5i4.3347.
B. Y. Phiadelvira, D. Z. Haq, D. C. R. Novitasari, dan F. Setiawan, “Prediksi Besar Daya Listrik Tenaga Gelombang Laut Metode Oscillating Water Coloumn (PLTGL-OWC) di Banyuwangi Menggunakan Extreme Learning Machine (ELM),” Unnes J. Math., vol. 11, no. 1, hal. 1–7, 2022, doi: 10.15294/ujm.v11i1.50967.
W. T. Puspitasari, D. Z. Haq, dan D. C. R. Novitasari, “Identifikasi Leukemia Berdasarkan Analisis Tekstur Citra Darah Tepi Mikroskopis Menggunakan Jaringan Syaraf Tiruan Feed-Forward,” Tek. Komput. J. Apl., vol. 11., no. 3, hal. 215–225, 2022.
A. A. Salih dan A. M. Abdulazeez, “Evaluation of Classification Algorithms for Intrusion Detection System: A Review,” J. Soft Comput. Data Min., vol. 02, no. 01, hal. 31–40, 2021, doi: 10.30880/jscdm.2021.02.01.004.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Khofifah Auliyatuz Zahroh, Dian Candra Rini Novitasari, Lutfi Hakim
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.