Analisis Sensitivitas Model SEIV pada Kasus Penularan Penyakit Polio

Authors

DOI:

https://doi.org/10.14421/fourier.2023.122.60-68

Keywords:

SEIV Model, Sensitivity analysis, Basic reproduction number

Abstract

The trend of polio transmission cases until 2023 is still fluctuating and does not tend to decrease monotonically. This incident is important to discuss, especially about the factors that influence cases of polio transmission. One of the studies used to describe the incidence of polio transmission is through mathematical model analysis. One of the mathematical models used to represent the incidence of polio transmission is a dynamic model with the Susceptible-Exposed-Infected-Vaccinated (SEIV) compartment. The SEIV model analyzed in this study involves seven parameters. If the value of each parameter fluctuates, it will affect cases of polio transmission. Therefore, this research aims to analyze the influence of each parameter in the SEIV model on cases of polio transmission. The method used in this research is the literature study method. Secondary data in this study was used to create a SEIV model simulation. The findings of this research are that two parameters have the greatest influence on cases of polio transmission. The infection transmission rate parameter is the most influential parameter in terms of increasing cases of polio transmission because the sensitivity index value is the highest among the other six parameters. Meanwhile, the natural death rate parameter is the parameter that has the most influence on reducing cases of polio transmission. This is because based on the sensitivity index value, the death rate parameter has the lowest sensitivity index value among the other six parameters.

Downloads

Download data is not yet available.

Author Biography

Joko Harianto, UNIVERSITAS CENDERAWASIH

Department of Mathematics 

References

L. M. Cai and X. Z. Li, “Analysis of a SEIV epidemic model with a nonlinear incidence rate,” Appl. Math. Model., vol. 33, no. 7, 2009.

O. Adebimpe, O. Abiodun, O. Oludoun, and B. Gbadamosi, “Analysis of an SEIV Epidemic Model with Temporary Immunity and Saturated Incidence Rate,” in 2020 International Conference in Mathematics, Computer Engineering and Computer Science, ICMCECS 2020, 2020.

M. Bai and L. Ren, “An SEIV epidemic model for childhood diseases with partial permanent immunity,” Comput. Math. Methods Med., vol. 2015, 2015.

E. Renald, D. Kuznetsov, and K. Kreppel, “Sensitivity Analysis and Numerical Simulation of a SEIV Basic Dog-Rabies Mathematical Model with Control,” Int. J. Adv. Sci. Res. Eng., vol. 05, no. 09, 2019.

O. Adebimpe, “Stability Analysis of a SEIV Epidemic Model with Saturated Incidence Rate,” Br. J. Math. Comput. Sci., vol. 4, no. 23, 2014.

Z. Li, J. Hong, C. Yu, and Z. Sun, “Awareness design and analysis upon two infectious states based on susceptible-exposed-infected-vigilant (SEIV) model,” in 2017 Asian Control Conference, ASCC 2017, 2018, vol. 2018-January.

G. A. Joseph and S. Balamuralitharan, “Global stability analysis of human SEIV-mosquitoes SEI model for malaria transmission,” in AIP Conference Proceedings, 2020, vol. 2277.

L. Wang, Z. Liu, C. Guo, Y. Li, and X. Zhang, “New global dynamical results and application of several SVEIS epidemic models with temporary immunity,” Appl. Math. Comput., vol. 390, 2021.

Gunawan, “Bifurkasi Mundur pada Model Epidemi SEIV dengan Laju Insidensi Nonlinear,” J. Mat. Murni dan Terap. “Epsilon,” vol. 10, no. 1, pp. 1–13, 2016.

M. Agarwal and A. S. Bhadauria, “Modeling Spread of Polio with the Role of Vaccination,” Appl. Appl. Math. An Int. J. MSC, vol. 6, no. 2, 2011.

D. Okuonghae, A. B. Gumel, and M. A. Safi, “Dynamics of a two-strain vaccination model for polio,” Nonlinear Anal. Real World Appl., vol. 25, 2015.

A. Dénes and L. Székely, “Global dynamics of a mathematical model for the possible re-emergence of polio,” Math. Biosci., vol. 293, 2017.

F. A. Alrawajeh et al., “Bio-Inspired Computational Methods for the Polio Virus Epidemic Model,” Comput. Mater. Contin., vol. 72, no. 2, 2022.

X. Liu et al., “FRACTIONAL MATHEMATICAL MODELING TO THE SPREAD OF POLIO WITH THE ROLE OF VACCINATION UNDER NON-SINGULAR KERNEL,” Fractals, vol. 30, no. 5, 2022.

M. S. iqbal et al., “Analysis of the fractional polio model with the Mittag-Leffler kernels,” Alexandria Eng. J., vol. 64, 2023.

M. Naveed, D. Baleanu, A. Raza, M. Rafiq, and A. H. Soori, “Treatment of polio delayed epidemic model via computer simulations,” Comput. Mater. Contin., vol. 70, no. 2, 2022.

M. Naveed, D. Baleanu, M. Rafiq, A. Raza, A. H. Soori, and N. Ahmed, “Dynamical behavior and sensitivity analysis of a delayed coronavirus epidemic model,” Comput. Mater. Contin., vol. 65, no. 1, 2020.

Y. C. Umam, M. Kharis, and Supriyono, “Model Epidemi SEIV Penyebaran Penyakit Polio pada Populasi Tak-Konstan,” Unnes J. Math., vol. 5, no. 2, 2016.

H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, “Sensitivity Analysis in a Dengue Epidemiological Model,” Conf. Pap. Math., 2013.

P. Driessche van den, “Reproduction numbers of infectious disease models,” Infect. Dis. Model., vol. 2, no. 3, pp. 288–303, 2017.

R. U. Hurint, M. Z. Ndii, and M. Lobo, “Analisis Sensitivitas Model Epidemi SEIR,” Nat. Sci. J. Sci. Technol., vol. 6, no. 1, 2017.

Downloads

Published

2023-10-31

How to Cite

Angelika, V., & Harianto, J. (2023). Analisis Sensitivitas Model SEIV pada Kasus Penularan Penyakit Polio. Jurnal Fourier, 12(2), 60–68. https://doi.org/10.14421/fourier.2023.122.60-68

Issue

Section

Articles