Perbandingan Metode Extreme Learning Machine (ELM) dan Kernel Extreme Learning Machine (KELM) Pada Klasifikasi Penyakit Cedera Panggul

Authors

  • Siti Nur Aisah UIN Sunan Ampel Surabaya
  • Dian Candra Rini Novitasari
  • Yuniar Farida

DOI:

https://doi.org/10.14421/fourier.2023.122.69-78

Keywords:

Hernia, Spondylolithesis, ELM, KELM

Abstract

Nyeri punggung bawah merupakan sebuah masalah kesehatan yang umum terjadi di dunia dan termasuk penyebab utama kecacatan.  Di Indonesia  pada tahun 2019 Hernia menduduki peringkat kedelapan penyakit terbanyak dengan jumlah kasus 292.145. Selain Hernia ganguan atau penyakit yang terjadi pada tulang panggul juga disebabkan karena menderita penyakit Spondylolithesis. Penelitian ini bertujuan untuk mengklasifikasi penyakit cedera panggul menggunakan Extreme Learning Machine (ELM) dan Kernel Extreme Learning Machine (KELM). Hasil uji coba terbaik yaitu dengan Nilai akurasi, sensitivitas dan spesifitas yaitu 90.25%, 88.66%, dan 92.22% untuk metode KELM.

Downloads

Download data is not yet available.

References

P. Ekstrand, C. Tegnestedt, M. Schuster, H. Eriksson, A. Hägg-Martinell, and J. Larsen, “The meaning of health among newly arrived immigrants: A qualitative study from stakeholders’ perspectives,” Nord. J. Nurs. Res., p. 205715852210835, 2022, doi: 10.1177/20571585221083525.

S. M. Vetal, S. S. Kalyani, and S. M. Chabnur, “An Ayurvedic approach to Low Back Pain,” J. Ayurveda Integr. Med. Sci., vol. 6, no. 4, 2021.

M. N. Zuhair, “Skripsi 2021 hubungan intensitas nyeri dengan status fungsional penderita,” 2021.

View of Hubungan Pra Lansia Dan Lansia Dengan Kejadian Hernia Inguinalis Di Rsud Dr. H. Chasan Boesoirie Periode 2020-2022. .

Y. Bao et al., “Characteristic Analysis and Literature Review of Hereditary Spinocerebellar Ataxia With Lumbar Spondylolisthesis and Valvular Prolapse,” J. Neurol. Res., vol. 9, no. 4–5, pp. 81–88, 2019, doi: 10.14740/jnr544.

U. S. Aesyi, T. W. Diwangkara, and R. T. Kurniawan, “Diagnosa Penyakit Disk Hernia Dan Spondylolisthesis Menggunakan Algoritma C5,” Telematika, vol. 16, no. 2, p. 81, 2020, doi: 10.31315/telematika.v16i2.3181.

S. Ramadhani and S. R. First, “A Review Comparative Mammography Image Analysis on Modified CNN Deep Learning Method,” Indones. J. Artif. Intell. Data Min., vol. 3, no. 1, pp. 1–10, 2020.

C. Yuan, Y. Yang, and Y. Liu, “Sports decision-making model based on data mining and neural network,” Neural Comput. Appl., vol. 0123456789, 2020, doi: 10.1007/s00521-020-05445-x.

A. R. Rao and M. Reimherr, “Non-linear Functional Modeling using Neural Networks,” pp. 1–13, 2019.

A. Lomuscio and L. Maganti, “An approach to reachability analysis for feed-forward ReLU neural networks,” 2017.

A. M. Hemeida et al., “Nature-inspired algorithms for feed-forward neural network classifiers: A survey of one decade of research,” Ain Shams Eng. J., vol. 11, no. 3, pp. 659–675, 2020, doi: 10.1016/j.asej.2020.01.007.

C. J. Tseng, C. J. Lu, C. C. Chang, and G. Den Chen, “Application of machine learning to predict the recurrence-proneness for cervical cancer,” Neural Comput. Appl., vol. 24, no. 6, pp. 1311–1316, 2014, doi: 10.1007/s00521-013-1359-1.

I. Fadilla, P. P. Adikara, and R. Setya Perdana, “Klasifikasi Penyakit Chronic Kidney Disease (CKD) Dengan Menggunakan Metode Extreme Learning Machine (ELM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3397–3405, 2018, [Online]. Available: https://www.researchgate.net/publication/323365845.

J. Lu, J. Huang, and F. Lu, “Kernel extreme learning machine with iterative picking scheme for failure diagnosis of a turbofan engine,” Aerosp. Sci. Technol., vol. 96, p. 105539, 2020, doi: 10.1016/j.ast.2019.105539.

F. Mohanty, S. Rup, B. Dash, B. Majhi, and M. N. S. Swamy, “An improved scheme for digital mammogram classification using weighted chaotic salp swarm algorithm-based kernel extreme learning machine,” Appl. Soft Comput. J., vol. 91, p. 106266, 2020, doi: 10.1016/j.asoc.2020.106266.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.

S. K. Dirjen et al., “Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learning untuk Identifikasi Tanaman,” J. RESTI, vol. 4, no. 1, pp. 117–122, 2020.

B. G. Marcot and A. M. Hanea, “What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?,” Comput. Stat., vol. 36, no. 3, pp. 2009–2031, 2021, doi: 10.1007/s00180-020-00999-9.

S. Saud, B. Jamil, Y. Upadhyay, and K. Irshad, “Performance improvement of empirical models for estimation of global solar radiation in India: A k-fold cross-validation approach,” Sustain. Energy Technol. Assessments, vol. 40, no. June, 2020, doi: 10.1016/j.seta.2020.100768.

O. K. Bhatti, A. O. Öztürk, R. Maham, and W. Farooq, “Examining Islamic piety at workplace via an artificial neural network,” Cogent Psychol., vol. 8, no. 1, 2021, doi: 10.1080/23311908.2021.1907038.

I. M. Fitriani, D. E. Ratnawati, and S. Anam, “Klasifikasi Senyawa Kimia dengan Notasi Simplified Molecular Input Line Entry System (SMILES) menggunakan Metode Extreme Learning Machine (ELM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 5, pp. 4516–4524, 2019, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5275.

Q. She, B. Hu, Z. Luo, T. Nguyen, and Y. Zhang, “A hierarchical semi-supervised extreme learning machine method for EEG recognition,” Med. Biol. Eng. Comput., vol. 57, no. 1, pp. 147–157, 2019, doi: 10.1007/s11517-018-1875-3.

N. Hadianto, H. B. Novitasari, and A. Rahmawati, “Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 163–170, 2019, doi: 10.33480/pilar.v15i2.658.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform., vol. 5, no. 2, pp. 697–711, 2021.

A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The impact of class imbalance in classification performance metrics based on the binary confusion matrix,” Pattern Recognit., vol. 91, pp. 216–231, 2019, doi: 10.1016/j.patcog.2019.02.023.

Downloads

Published

2023-10-31

How to Cite

Aisah, S. N., Dian Candra Rini Novitasari, & Farida, Y. . (2023). Perbandingan Metode Extreme Learning Machine (ELM) dan Kernel Extreme Learning Machine (KELM) Pada Klasifikasi Penyakit Cedera Panggul . Jurnal Fourier, 12(2), 69–78. https://doi.org/10.14421/fourier.2023.122.69-78

Issue

Section

Articles