Protokol Otentikasi Menggunakan Konstruksi Matriks Komutatif Atas Matriks Aljabar Max-Plus

Authors

  • Mufarij Anna Ziaulhaq Universitas Islam Negeri Sunan Kalijaga Yogyakarta
  • Muhamad Zaki Riyanto

DOI:

https://doi.org/10.14421/fourier.2023.122.51-59

Keywords:

Aljabar Max-Plus, Semiring Non Komutatif, Matriks Komutatif, Kriptografi, Protokol Otentikasi

Abstract

Aljabar max-plus adalah himpunan dilengkapi operasi penjumlahan didefinisikan sebagai operasi maksimum dan operasi perkalian didefinisikan sebagai operasi penjumlahan.Konsep aljabar max-plus diperluas untuk membentuk suatu himpunan matriks atas aljabar max-plus.Lebih lanjut himpunan matriks atas aljabar max-plus merupakan struktur semiring non komutatif.Linde dan Puente [1] telah mengkonstruksi suatu matriks yang bersifat komutatif terhadap operasi perkalian pada matriks atas aljabar max-plus, selanjutnyaMuanalifah dan Sergeev[2] menggunakan konstruksi matriks komutatif tersebut untuk diaplikasikan pada kriptografi, yaitu pada protokol pertukaran kunci Stickel. Artikel ini akan mengembangkan protokol pertukaran kunci tersebut menjadi suatu protokol otentikasi. Fungsi protokol otentikasi yaitu untuk memastikan kebenaran identitas pihak pengirim kepada pihak penerima, agar tidak terjadi pemalsuan data pengirim.Penggunaan matriks komutatif atas aljabar max-plus dimaksudkan untuk meningkatkan keamanan protokol otentikasi dari pihak yang hendak menyadap protokol otentikasi tersebut.

The max-plus algebra is a set that completed addition operations defined as maximum operations and multiplication operations defined as addition operations. The concept of max-plus algebra is extended to form a matrix set over max-plus algebra. Furthermore, the set of matrices over max-plus algebra is a noncommutative semiring structure. Linde and Puente [1] has constructed a matrix that is commutative to multiplication operations on matrices over max-plus algebra, then Muanalifah and Sergeev[2] uses the commutative matrix construction to be applied to Stickel key exchange protocol. This article will develop the key exchange protocol into an authentication protocol.The function of the authentication protocol is to ensure the correctness of the identity of the sending party to the receiving party, so that falsification of sender data does not occur. The use of commutative matrices over max-plus algebra is intended to increase the security of authentication protocols from those who want to intercept the authentication protocol.

Downloads

Download data is not yet available.

References

J. Linde and M. J. de la Puente, "Matrices commuting with a given normal tropical," Linear Algebra and its Applications, pp. 101-121, 2015.

Any Muanalifah and Sergei Sergeev, "Modifying The Tropical Version Of Stickel's Key," Applications of Mathematics, pp. 727-753, 2020.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography. Boca Raton: CRC Press, 1996.

Subiono, Aljabar Max-Plus dan Terapannya. Surabaya: Matematika FMIPA ITS, 2013.

M. Andy Rudhito, Aljabar Max-Plus dan Penerapannya. Yogyakarta: Program Studi Pendidikan Matematika FKIP Universitas Sanata Dharma, 2016.

E. Stickel, "A New Method for Exchanging Secret Keys," Third International Conference on Information Technology and Applications (ICITA'05), 2005.

Johannes A.Buchmann, Introduction to Cryptography. New York: Springer New York, 2004.

Dima Grigoriev and Vladimir Shpilrain, "Tropical Cryptography," Communications in Algebra, pp. 2624–2632, 2014.

Peter W. Shor, "Polynomial-time Algorithms for Prime Factorization and Discrete Logarithm on a Quantum Computer," SIAM Journal on Computing, pp. 1484-1509, 1997.

Kasie G. Farlow, Max-Plus Algebra.: Virginia Polytechnic Institute, 2009.

Daniel Jones, Special and Structured Matrices in Max-Plus Algebra.: The University of Birmingham, 2017.

W. Diffie and M. Hellman, "New Directions in Cryptography," IEEE Transactions on Information Theory, pp. 644-654, 1976.

Douglas R. Stinson and Maura B. Paterson, Textbooks in Mathematics Cryptography Theory and Practice Fourth Edition.: CRC Press, Inc, 2019.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman, An Introduction to Mathematical Cryptography Second Edition.: Springer-Verlag New York, Inc, 2014.

Musthofa, "An Application of Max-Plus Algebra in Criptography," in International Seminar on Innovation in Mathematics and Mathematics Education, 2014.

Downloads

Published

2023-10-31

How to Cite

Mufarij Anna Ziaulhaq, & Muhamad Zaki Riyanto. (2023). Protokol Otentikasi Menggunakan Konstruksi Matriks Komutatif Atas Matriks Aljabar Max-Plus. Jurnal Fourier, 12(2), 51–59. https://doi.org/10.14421/fourier.2023.122.51-59

Issue

Section

Articles