Pengaruh Reduksi Fitur Pada Klasifikasi Kanker Paru Menggunakan CNN Dengan Arsitektur GoogLeNet

Authors

  • Siti Nur Fadilah Universitas Islam Negeri Sunan Ampel
  • Dian Candra Rini Novitasari UIN Sunan Ampel Surabaya
  • Lutfi Hakim UIN Sunan Ampel Surabaya

DOI:

https://doi.org/10.14421/fourier.2023.121.20-32

Keywords:

Kanker Paru, CNN, GoogLeNet, Reduksi Fitur, PCA

Abstract

Kanker paru merupakan jenis kanker dengan  penyebab kematian terbanyak. Penelitian ini bertujuan untuk mengklasifikasikan jenis kanker paru apakah termasuk kedalam kelas lung adenocarcinoma, benign lung tissue, lung squamous cell carcinoma berdasarkan citra histopatologi menggunakan metode CNN arsitektur GoogLeNet serta reduksi fitur PCA. Evaluasi model yang digunakan pada penelitian ini menggunakan confusion matrix. Data yang digunakan dalam penelitian ini sejumlah 15000 data yang terbagi menjadi 3 kelas dengan masing-masing kelas berjumlah 5000 data. Pada penelitian ini parameter uji coba yang digunakan yaitu probabilitas dropout dan jumlah batchsize. Lalu, metode reduksi fitur yang digunakan yaitu PCA. Hasil terbaik yang diperoleh yaitu pada pembagian data 90:10 dengan nilai probabilitas dropout 0.9 dan jumlah batchsize 8 dengan memperoleh nilai akurasi, sensitivitas, spesifitas berturur-turut yaitu 99.95%, 99.97%, dan 99.86% serta membutuhkan waktu training selama 93 menit 27 detik.

Downloads

Download data is not yet available.

References

K. Xu et al., “Progress of exosomes in the diagnosis and treatment of lung cancer,” Biomed. Pharmacother., vol. 134, p. 111111, 2021.

H. Sung et al., “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021.

L. Listyalina, E. L. Utari, and D. E. Puspaningtyas, “Penentuan Penyakit Paru Dengan Menggunakan Jaringan Saraf Tiruan,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 1, pp. 233–240, 2020.

M. A. Al-Antari, C.-H. Hua, J. Bang, and S. Lee, “Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest x-ray images,” Appl. Intell., vol. 51, no. 5, pp. 2890–2907, 2021.

O. L. Istifarinta, P. Prajitno, and D. S. Soejoko, “Computer-Aided Detection (CAD) Deteksi Nodul Paru-Paru dari Computed Tomography (CT),” J. Med. Phys. Biophys., vol. 9, no. 1, pp. 10–17, 2022.

E. L. Henriksen, J. F. Carlsen, I. M. M. Vejborg, M. B. Nielsen, and C. A. Lauridsen, “The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review,” Acta radiol., vol. 60, no. 1, pp. 13–18, 2019.

B. K. Hatuwal and H. C. Thapa, “Lung cancer detection using convolutional neural network on histopathological images,” Int. J. Comput. Trends Technol, vol. 68, no. 10, pp. 21–24, 2020.

C. Yi, “Application of Convolutional Networks in Clothing Design from the Perspective of Deep Learning,” Sci. Program., vol. 2022, 2022.

D. Haritha, N. Swaroop, and M. Mounika, “Prediction of COVID-19 Cases Using CNN with X-rays,” in 2020 5th International Conference on Computing, Communication and Security (ICCCS), IEEE, 2020, pp. 1–6.

P. Salavati and H. M. Mohammadi, “Obstacle detection using GoogleNet,” in 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), IEEE, 2018, pp. 326–332.

M. S. AL-Huseiny and A. S. Sajit, “Transfer learning with GoogLeNet for detection of lung cancer,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 2, pp. 1078–1086, 2021.

A. K. Idrees and A. K. M. Al-Qurabat, “Energy-efficient data transmission and aggregation protocol in periodic sensor networks based fog computing,” J. Netw. Syst. Manag., vol. 29, no. 1, pp. 1–24, 2021.

A. K. Gárate-Escamila, A. H. El Hassani, and E. Andrès, “Classification models for heart disease prediction using feature selection and PCA,” Informatics Med. Unlocked, vol. 19, p. 100330, 2020.

B. Sahu, S. Mohanty, and S. Rout, “A hybrid approach for breast cancer classification and diagnosis,” EAI Endorsed Trans. Scalable Inf. Syst., vol. 6, no. 20, 2019.

R. T. Prasetio and S. Susanti, “Prediksi Harapan Hidup Pasien Kanker Paru Pasca Operasi Bedah Toraks Menggunakan Boosted k-Nearest Neighbor,” J. Responsif Ris. Sains dan Inform., vol. 1, no. 1, pp. 64–69, 2019.

N. P. Nugroho and F. F. Wati, “Koeksistensi Kanker Paru Dan Tuberkulosis,” Syifa’Med J Kedokt dan Kesehat, vol. 11, no. 1, p. 49, 2020.

P. Wang, E. Fan, and P. Wang, “Comparative analysis of image classification algorithms based on traditional machine learning and deep learning,” Pattern Recognit. Lett., vol. 141, pp. 61–67, 2021, doi: 10.1016/j.patrec.2020.07.042.

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of deep convolutional neural networks,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5455–5516, 2020.

J. Gupta, S. Pathak, and G. Kumar, “A hybrid optimization-tuned deep convolutional neural network for bare skinned image classification in websites,” Multimed. Tools Appl., pp. 1–23, 2022.

N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network pada klasifikasi sidik jari menggunakan RESNET-50,” J. Tek. Inform., vol. 1, no. 2, pp. 61–68, 2020.

S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sist. Dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.

L. Tsochatzidis, L. Costaridou, and I. Pratikakis, “Deep learning for breast cancer diagnosis from mammograms—a comparative study,” J. Imaging, vol. 5, no. 3, p. 37, 2019.

C. Garbin, X. Zhu, and O. Marques, “Dropout vs. batch normalization: an empirical study of their impact to deep learning,” Multimed. Tools Appl., vol. 79, no. 19, pp. 12777–12815, 2020.

F. Demir, D. A. Abdullah, and A. Sengur, “A new deep CNN model for environmental sound classification,” IEEE Access, vol. 8, pp. 66529–66537, 2020.

S. P. Kannojia and G. Jaiswal, “Effects of varying resolution on performance of CNN based image classification: An experimental study,” Int. J. Comput. Sci. Eng, vol. 6, no. 9, pp. 451–456, 2018.

F. Yuesheng et al., “Circular fruit and vegetable classification based on optimized GoogLeNet,” IEEE Access, vol. 9, pp. 113599–113611, 2021.

S. Bhattacharya et al., “A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU,” Electronics, vol. 9, no. 2, p. 219, 2020.

M. A. S. Yudono, E. A. Z. Hamidi, A. H. K. Jumadi, A. De, and W. M. Sidik, “Jaringan Syaraf Tiruan Perambatan Balik untuk Klasifikasi Covid-19 Berbasis Tekstur Menggunakan Orde Pertama Berdasarkan Citra Chest X-Ray,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 4, pp. 799–808, 2022.

Downloads

Published

2023-04-30

How to Cite

Fadilah, S. N., Novitasari, D. C. R., & Hakim, L. (2023). Pengaruh Reduksi Fitur Pada Klasifikasi Kanker Paru Menggunakan CNN Dengan Arsitektur GoogLeNet. Jurnal Fourier, 12(1), 20–32. https://doi.org/10.14421/fourier.2023.121.20-32

Issue

Section

Articles