Modeling and Prediction of COVID-19 with a Large Scale Social Distancing

  • Yudi Ari Adi Universitas Ahmad Dahlan
  • Meksianis Z. Ndii University of Nusa Cendana
Keywords: Covid-19, mathematical model, PSBB, stability

Abstract

Coronavirus 2019 (COVID-19), yang kasusnya dimulai di Cina, dalam kurun waktu dua bulan telah menyebar dengan cepat ke lebih dari 114 negara dan territorial. Pemahaman tentang dinamika penularan Covid-19 sangat penting untuk menentukan kebijakan dan strategi dalam pengobatan dan pengendalian penyebaran penyakit ini. Dalam makalah ini, disusun model matematika yang menggambarkan dinamika penularan penyakit menggunakan model matematika deterministik dengan menggunakan data penyebaran COVID-19 di Jakarta, Indonesia dari 3 Maret 2020, hingga 10 April 2020. Model berbentuk Sistem persamaan diferensial yang selanjutnya dilakukan analisis matematika dan simulasi numerik. Hasil simulasi menunjukkan bahwa tanpa intervensi, angka reproduksi penyebaran Covid-19 di Provisi Jakarta sekitar 1,658 dan jika Pembatasan Sosial Berskala Besar (PSBB) diimplementasikan, maka angka reproduksinya turun menjadi 1,40. Lebih lanjut, epidemi diperkirakan akan berakhir sekitar akhir November 2020 dengan kasus puncak pada pertengahan Juni 2020 dengan jumlah orang yang dikonfirmasi positif terinfeksi mencapai sekitar 9.000 jiwa. Dari hasil pemodelan ini, disimpulkan bahwa untuk meminimalkan penularan penyakit, perlu menerapkan kebijakan dan kontrol yang lebih ketat.

[Coronavirus disease 2019 (COVID-19) which was initiated in China, has spread rapidly in more than 114 countries and territories over the last two months. An understanding of the dynamics of Covid-19 transmission is very important to determine policies and strategies in the treatment and control of the spread of this disease. In this paper, we formulated a mathematical model that describes the transmission dynamics of the disease using a deterministic mathematical model and the model is validated against data from Jakarta, Indonesia from March 3, 2020, to April 10, 2020. Mathematical analysis and numerical simulations are presented. We found that without intervention, the reproduction number is around 1.658 and the reproduction number declines to 1.40 if large scale social distancing is implemented. Furthermore, the end time of epidemic is predicted to be around the end of November 2020 with peak cases around mid-June 2020 and the number of confirmed infected individuals is around 9,000. To minimize the transmission of the diseases, it is necessary to enforce strict policies and controls.]

Downloads

Download data is not yet available.

References

[1] Worldometer, COVID-19 Coronavirus Pandemic, https://www.worldometers.info/coronavirus/ (April 4, 2020).
[2] Lauer, S., Grantz, K., Bi, Q., Jones, F., Zheng, Q., Meredith, H., Azman, A., Reich, N., and Lessler, J., The incubation period of coronavirus disease 2019 (covid-19) from publicly reported cases: estimation and application, Annals Intern. Medicine, 2020.
[3] CDC, Symptoms of novel coronavirus (2019-ncov), us centers for disease control and prevention https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing (April 20, 2020).
[4] Hui, D., Azhar, E., Madani, T., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T., Memish, Z., Drosten, C., and Zumla, The continuing epidemic threat of novel coronaviruses to global healththe latest novel coronavirus outbreak in wuhan, china, International Journal of Infectious Diseases, 91, pp. 264–266, 2020.
[5] Sohrabia, C., Alsafib, Z., O’Neilla, N., Khanb, M., Kerwanc, A.,Al-Jabirc, A., Iosifidisa, C., and Aghad, R., World health organization declares global emergency: A review of the 2019 novel coronavirus (covid-19), Int. Journal of Surgery, 76, pp. 71–76, 2020.
[6] Li,Y., Wang, B., Peng, R., Zhou, C., Zhan, Y., Liu, Z., Jiang, X., and Zhao, B., Mathematical modeling and epidemic prediction of covid-19 and its to epidemic prevention and control measures,, Annals of Infectious Dis. Epidemiol, 5 (1), pp.1052, 2020.
[7] WHO, Report of the who-china joint mission on coronavirus disease 2019 (covid-19), 16–24 february 2020.
[8] Yi, Y., Lagniton, P., Ye, S., Li, E., and Xu, R., Covid-19: what has been learned and to be learned about the novel coronavirus disease, Int. J. Biol. Sci., 16, pp. 1753–1766, 2020.
[9] Gumel, A., McCluskey, C., and Watmough, J., An sveir model for assesing potential impact of an imperfect anti-sars vaccine, Mathematical Biosciences and Engineering, 3 (3), pp. 485–512, 2006.
[10] Gumel, A., Ruan, S., Day, T., Watmough, J., Brauer, F., Van den Driessche, P., Gabrielson, D., Bowman, C., Alexander, M., Ardal, S., Wu, J., and Sahai, B., Modelling strategies for controlling sars uotbreaks, Proc. R. Soc. Lond. B, 271, pp. 2223–2232, 2004.
[11] Zhao, S. and Chen, H., Modeling the epidemic dynamics and control of covid-19 outbreak in china, Quantitative Biology, 8 pp. 11–19, 2020.
[12] Anastassopoulou, C., Russo, L., Tsakris, A., and Siettos, C., Data-based Analysis, Modeling and Forecasting of the COVID-19 Outbreak, PLOS ONE, 15 (3): e0230405, 2020.
[13] Kucharski, A., Timothy, W., Charlie, D., Yang, L., John, E., Sebastian, F., and Rosalind, M., Early dynamics of transmission and control of covid-19: a mathematical modelling study, Lancet Infectious Diseases, 2020.
[14] Li, J., You, Z., Wang, Q., Zhou, Z., Qiu, Y., Luo, R., and Ge, X., The epidemic of 2019-novel-coronavirus (2019-ncov) pneumonia and insights for emerging infectious diseases in the future, Microbes Infect, 22 (2), pp.80–85, 2020.
[15] Nuraini, N., Khairudin, K. and Apri, M., Modeling simulation of covid-19 in indonesia based on early endemic data, Communication in Biomathematical Sciences, 3 (1), pp. 1–8, 2020.
[16] Van den Driessche, P. and Watmough, J., Reproduction numbers and sub-threshold endemic equilbria for compartmental model of disease transmission, Mathematical Biosciences, 180, pp. 29–48, 2002.
Published
2020-04-30
Section
Articles