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Abstrak   
 

Perkembangan teori integral khususnya integral Henstock yang terbaru berhasil dikemukakan oleh Laramie Paxton, 

yaitu integral Henstock Sekuensial. Pendefinisian Integral Henstock Sekuensial hampir sama seperti mendefinisikan 

integral Henstock, bedanya pada integral Henstock Sekuensial partisinya melibatkan barisan fungsi positif yang 

disebut partisi tag δn-fine. Laramie membuktikan bahwa fungsi yang terintegral Henstock juga terintegral Henstock 

Sekuensial begitupun sebaliknya, sehingga sifat-sifat yang berlaku pada integral Henstock juga belaku pada integral 

Henstock Sekuensial. Di dalam tulisan ini dibuktikan beberapa sifat integral Henstock Sekuenisial dan teorema-

teorema dasar seperti yang berlaku pada integral Henstock. 

 

Kata Kunci Integral Henstock; Integral Henstock Sekuensial; partisi tag δ
 

Abstract   
 

The development of integral theories, in particular the latest Henstock integral, was succeeded by Laramie Paxton, 

the Sequential Henstock integral. The definition of a Sequential Henstock Integral is almost the same as defining 

the integral of Henstock, the difference in the Henstock integral Sequential partition involves a sequence of positive 

functions called the δn-fine tag partition. Laramie proves that Henstock's integral function is also integral to 

Sequential Henstock as well as vice versa, so that the properties that apply to the integral Henstock also apply to 

the Sequential Henstock integral. In this paper some of the attributes of Henstock Sekuenisial integrals and basic 

theorems such as those that apply to the integral Henstock. 

 

Keywords Integral Henstock; Sequential Henstock Integral; δ  tag partition
 

 
 

 
 

Pendahuluan 

 

Ilmu pengetahuan merupakan hal yang mengalami perkembangan secara terus-menerus. Diantaranya 
teori integral yaitu ilmu bidang matematika analisis yang terus mengalami perkembangan, dan 
memungkinkan untuk terus diteliti dan dikembangkan. Pada tahun 1854, teori integral dengan 
penggunaan partisi sebagai dasar pengembangannya telah disusun oleh Riemann. Teori Integral 
Riemann merupakan teori integral yang mudah dipelajari dan dimengerti dalam mempelajarinya. 
Namun demikian, seiring jalannya waktu teori Integral Riemann juga mengalami perkembangan. Ralph 
Henstock (1957) seorang ahli matematikawan, mencermati ada fungsi yang tidak terintegral Riemann. 
Sebagaimana diketahui pendefinisian integral yang dilakukan Riemann hanya membahas fungsi yang 
terbatas, namun demikian tidak semua fungsi yang terbatas terintegralkan secara Riemann, contoh 
fungsi yang tidak terintegral Riemann adalah fungsi Dirichlet. Dengan menggunakan partisi, Henstock 
menyusun teori integral baru yang dikenal dengan nama Integral Henstock. 

Baru-baru ini, tepat di tahun 2016 perkembangan teori integral yang terbaru berhasil dikemukakan 
oleh Laramie Paxton, yaitu perkembangan dari integral Henstock menjadi integral Henstock Sekuensial 
melalui penggunaan urutan umum atau biasa disebut barisan, yaitu, integral Henstock didefinisikan 
melalui pendekatan barisan. Lebih lanjut, Laramie membuktikan bahwa fungsi yang terintegral Henstock 
juga terintegral Henstock Sekuensial begitupun sebaliknya, sehingga sifat-sifat yang berlaku pada 
integral Henstock juga belaku pada integral Henstock Sekuensial. Oleh karena itu, menarik untuk 
dipelajari sifat-sifat apa saja yang berlaku pada integral Henstock Sekuensial serta mengkaji lebih 
dalam bukti-bukti yang tidak diberikan oleh Laramie Paxton. 
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Landasan Teori 

 

Pada bagian ini, akan diberikan definisi partisi, yang telah dikenal ketika mendefinisikan integral 
Riemann maupun integral Henstock. Namun akan diberikan definisi non-overlapping terlebih dahulu. 
 

Definisi 2.1. (Bartle, 2001:4) Dua interval terbuka pada ℝ dikatakan tidak tumpang tindih (non-
overlapping) apabila irisan dari kedua interval tersebut kosong atau dua interval tertutup pada ℝ 
dikatakan tidak tumpang tindih (non-overlapping) apabila irisan dari kedua interval tersebut paling 
banyak satu titik. 

 
Berikut akan diberikan contoh agar lebih mudah dalam memahami definisi dua interval yang tidak 

tumpang tindih (non-overlapping). 
 

Contoh 2.2. Diberikan masing-masing dua pasang interval pada ℝ: 

a. 𝐴 = [0,2] dan 𝐵 = [2,5] 
Dua interval tersebut dikatakan tidak tumpang tindih (non-overlapping), karena 𝐴 ∩ 𝐵 = {2}. 

b. 𝑃 = (2,4) dan 𝑄 = (5,7) 
Interval 𝑃 dan 𝑄 dikatakan tidak tumpang tindih (non-overlapping), karena 𝐴 ∩ 𝐵 = ∅. 

c. 𝑅 = [1,3] dan 𝑆 = [2,4] 
Dua interval tersebut dikatakan tumpang tindih (overlapping), karena 

𝑅 ∩ 𝑆 = [2,3]. 
 

Definisi 2.3. (Bartle, 2000:145) Partisi 𝑃 pada suatu interval 𝐼 = [𝑎, 𝑏] adalah koleksi interval-interval 
tertutup yang non-overlapping sehingga 𝐼 = 𝐼1 ∪ …∪ 𝐼𝑛. Ditulis 𝑃 = {𝐼1, … , 𝐼𝑛} dengan 𝐼𝑖 = [𝑥𝑖−1, 𝑥𝑖] 
dimana 

𝑎 = 𝑥0 < ⋯ < 𝑥𝑖−1 < 𝑥𝑖 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏. 
 
Titik-titik 𝑥𝑖  (𝑖 = 0,… , 𝑛) disebut titik-titik partisi 𝑃. Jika titik 𝑡𝑖 dipilih dari setiap interval 𝐼𝑖 , ∀𝑖 =
1, … , 𝑛, maka 𝑡𝑖 disebut tag dan himpunan pasangannya disebut partisi tag pada 𝐼 dapat ditulis 
 

𝑃 = {([𝑥𝑖−1, 𝑥𝑖], 𝑡𝑖)}𝑖=1
𝑘  

 
Dengan 𝑥𝑖−1 ≤ 𝑡𝑖 ≤ 𝑥𝑖. 

 
Berikut akan diberikan contoh partisi dan partisi tag agar lebih mudah dalam memahami definisi 

partisi di atas. 
 

Contoh 2.4. Diberikan interval  𝐴 = [0,12] 
dibentuk  𝑃1 = {[0,3], [3,6], [6,9], [9,12]} 
  𝑃2 = {[0,2], [2,4], [4,6], [6,8], [8,10], [10,12]} 
maka 𝑃1 dan 𝑃2 disebut partisi. 
 

Dapat dipilih 𝑡𝑖 dari setiap 𝐼𝑖, sehingga dapat dibentuk partisi tag pada 𝐴: 
 

𝑃1 = {([0,3], 1), ([3,6], 5), ([6,9], 7), ([9,12], 11)} 
𝑃2 = {([0,2], 1), ([2,4], 3), ([4,6], 5), ([6,8], 7), ([8,10], 9), ([10,12], 11)} 

Selanjutnya, akan diberikan definisi partisi 𝛿 − 𝑓𝑖𝑛𝑒 yang menjadi dasar terbentuknya integral Riemann. 
 

Definisi 2.5. (Paxton, 2016:3) Diberikan 𝛿 > 0, partisi tag P pada 𝐼 = [𝑎, 𝑏] dikatakan 𝛿-fine apabila 
setiap subinterval [𝑥𝑖−1, 𝑥𝑖] ⊂ [𝑎, 𝑏], memenuhi 

𝑥𝑖 − 𝑥𝑖−1 < 𝛿, ∀𝑖 = 1, 2, … , 𝑘 . 
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Berikut akan diberikan contoh partisi 𝛿 − 𝑓𝑖𝑛𝑒agar lebih mudah dalam memahami definisi partisi 

𝛿 − 𝑓𝑖𝑛𝑒. 
 

Contoh 2.6. Diberikan 𝛿 = 3. Berdasarkan Contoh 2.4. dapat disimpulkan bahwa: 

 𝑃1 bukan merupakan partisi 𝛿 − 𝑓𝑖𝑛𝑒 karena ada subinterval [0,3] ⊂ 𝐴 tetapi 3 − 0 > 𝛿 = 3 
 𝑃2 merupakan partisi 𝛿 − 𝑓𝑖𝑛𝑒. 
 

Definisi integral Riemann, memotivasi Henstock memodifikasi partisi yang digunakan oleh Riemann 

sehingga terbentuk integral Henstock dengan definisi partisi 𝛿(𝑥) − 𝑓𝑖𝑛𝑒 berikut. 
 

Definisi 2.7. (Wells, 2011:10) Diberikan 𝐼 = [𝑎, 𝑏] dan 𝛿(𝑥): 𝐼 → ℝ merupakan fungsi positif sehingga 
𝛿(𝑥) > 0, ∀𝑥 ∈ 𝐼. Himpunan 𝑃 dikatakan partisi 𝛿(𝑥)-fine pada 𝐼 apabila memenuhi  
 

[𝑥𝑖−1, 𝑥𝑖] ⊆ (𝑡𝑖 − 𝛿(𝑡𝑖), 𝑡𝑖 + 𝛿(𝑡𝑖)) 
 

∀𝑖 = 1, … , 𝑛, atau dengan kata lain, partisi tag 𝑃 = {([𝑥𝑖−1, 𝑥𝑖], 𝑡𝑖)}𝑖=1
𝑘  dikatakan 𝛿(𝑥)-fine apabila  

setiap subinterval [𝑥𝑖−1, 𝑥𝑖] memenuhi: 
 

𝑥𝑖 − 𝑥𝑖−1 < 𝛿(𝑡𝑖), ∀𝑖 = 1, 2, … , 𝑘, 
 

dengan 𝑥𝑖−1 ≤ 𝑡𝑖 ≤ 𝑥𝑖  . 
 

Berikut akan diberikan contoh partisi 𝛿(𝑥) − 𝑓𝑖𝑛𝑒 agar lebih mudah dalam memahami definisi 

partisi 𝛿(𝑥) − 𝑓𝑖𝑛𝑒. 
 

Contoh 2.8. Diberikan interval  𝐼 = [0,1] dan didefinisikan fungsi: 
 

𝛿(𝑥) = {
1/4, 𝑥 = 0
2𝑥, 0 < 𝑥 ≤ 1

 

 

dapat dibentuk 𝑃 yang merupakan partisi 𝛿(𝑥): 
  

𝑃 = {([0,
1

4
] ,
1

4
) , ([

1

4
,
2

4
] ,
1

4
) , ([

2

4
,
3

4
] ,
2

4
) , ([

3

4
, 1] ,

7

8
)}. 

 

Definisi 2.9. (Paxton, 2016: 3) Diberikan fungsi 𝛿: 𝐼 → ℝ dengan 𝛿(𝑥) > 0, 𝑢𝑛𝑡𝑢𝑘 𝑠𝑒𝑡𝑖𝑎𝑝 𝑥 ∈ 𝐼, yang 
kemudian 𝛿(𝑥) disebuat gauge pada I. 
 

Definisi-definisi diatas sangat bermanfaat dalam pendefinisian integral Henstock sekuensial serta 
pembuktian beberapa sifatnya. 

Lemma berikut ini akan digunakan dalam pembuktian teorema-teorema pada integral Henstock 
Sekuensial. 

Lemma 2.10. (Wells, 2011:14) Diberikan fungsi positif 𝛿(𝑥) yang didefinisikan pada [𝑎, 𝑏], dan 
interval tag (𝑡, [𝑎, 𝑏]). Interval (𝑡, [𝑎, 𝑏]) merupakan partisi tag 𝛿(𝑥)-fine pada [𝑎, 𝑏] jika dan hanya 
jika {(𝑡, [𝑎, 𝑡]), (𝑡, [𝑡, 𝑏])} merupakan partisi tag 𝛿(𝑥) –fine pada [𝑎, 𝑏]. Selanjutnya, 

𝑓(𝑡)(𝑏 − 𝑎) = 𝑓(𝑡)(𝑡 − 𝑎) + 𝑓(𝑡)(𝑏 − 𝑡). 
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Bukti:  
(Syarat perlu) 

Diketahui bahwa (𝑡, [𝑎, 𝑏]) merupakan partisi tag 𝛿(𝑥) − 𝑓𝑖𝑛𝑒 pada [𝑎, 𝑏] dengan [𝑎, 𝑡] ⊆ [𝑎, 𝑏] 
dan [𝑡, 𝑏] ⊆ [𝑎, 𝑏] serta [𝑎, 𝑏] ⊆ (𝑡 − 𝛿(𝑡), 𝑡 + 𝛿(𝑡)). Akibatnya, {(𝑡, [𝑎, 𝑡]), (𝑡, [𝑡, 𝑏])} merupakan 

partisi tag 𝛿(𝑥) − 𝑓𝑖𝑛𝑒 pada [𝑎, 𝑏]. 
(Syarat cukup) 

Diketahui bahwa {(𝑡, [𝑎, 𝑡]), (𝑡, [𝑡, 𝑏])} merupakan partisi tag 𝛿(𝑥) − 𝑓𝑖𝑛𝑒 pada [𝑎, 𝑏] berarti  
 

[𝑎, 𝑡] ⊆ (𝑡 − 𝛿(𝑡), 𝑡 + 𝛿(𝑡)) 
 
Dan 

[𝑡, 𝑏] ⊆ (𝑡 − 𝛿(𝑡), 𝑡 + 𝛿(𝑡)) 
 
Sehingga diperoleh  

[𝑎, 𝑡] ∪ [𝑡, 𝑏] = [𝑎, 𝑏] 
 
dan 

[𝑎, 𝑏] ⊆ (𝑡 − 𝛿(𝑡), 𝑡 + 𝛿(𝑡)) 
 

Oleh karena itu, (𝑡, [𝑎, 𝑏]) merupakan partisi tag 𝛿(𝑥) − 𝑓𝑖𝑛𝑒 pada [𝑎, 𝑏]. 
 
Selanjutnya, 
  

𝑓(𝑡)(𝑏 − 𝑎)    = 𝑓(𝑡)𝑏 − 𝑓(𝑡)𝑎 + 𝑓(𝑡)𝑡 − 𝑓(𝑡)𝑡 = 𝑓(𝑡)(𝑡 − 𝑎) + 𝑓(𝑡)(𝑏 − 𝑡).  ∎ 
 

Berikut ini diberikan definisi integral Henstock, dapat digunakan dalam memahami integral Henstock 

Sekuensial. Pendefinisian integral Henstock menggunakan partisi tag 𝛿(𝑥)-fine. 
 

Definisi 2.11. (Bartle, 2001:12) Fungsi 𝑓: 𝐼 = [𝑎, 𝑏] → ℝ dikatakan terintegral Henstock pada 𝐼 apabila 
terdapat bilangan positif 𝐴 ∈ ℝ dan untuk setiap 𝜀 > 0, 𝑡𝑒𝑟𝑑𝑎𝑝𝑎𝑡 𝛿(𝑥) > 0 sehingga untuk setiap 
𝑃 = {([𝑥𝑖−1, 𝑥𝑖], 𝑡𝑖)}𝑖=1

𝑘  yang merupakan partisi tag 𝛿(𝑥)-fine pada 𝑙 berlaku 
 

|∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − 𝐴

𝑘

𝑖=1

| < 𝜀 , 

 
atau dapat ditulis 
 

|𝑆(𝑓, 𝑃) − 𝐴| < 𝜀. 
 

Bilangan 𝐴 disebut nilai integral Henstock fungsi 𝑓 pada 𝐼 ditulis𝐴 = ∫ 𝑓
𝑏

𝑎
, kemudian fungsi𝑓 terintegral 

Henstock pada 𝐼 dapat ditulis𝑓 ∈ ℛ∗(𝐼). 
 

Berikut diberikan contoh fungsi terintegral Henstock, agar lebih mudah dalam memahami definisi 
diatas. 
 

Contoh 2.12. Diberikan fungsi Dirichlet, ∀𝑥 ∈ [0,1] didefinisikan 
 

𝑓(𝑥) = {
1, 𝑗𝑖𝑘𝑎 𝑥 ∈ ℚ 
0, 𝑗𝑖𝑘𝑎 𝑥 ∉ ℚ

 

Akan dibuktikan bahwa 𝑓(𝑥) terintegral Henstock pada [0,1] dan ∫ 𝑓(𝑥) = 0
1

0
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Penjelasan: 

Ambil sebarang 𝜀 > 0, didefinisikan 𝐸 = {𝑥𝑖 ∈ ℚ, 𝑥𝑖 ∈ [0,1]}, 𝑖 = 1, 2, 3, … , 𝑛 , selanjutnya 

didefinisikan fungsi 𝛿(𝑥) pada [0,1] dengan 
 

𝛿(𝑥𝑖) = {
𝜀
2𝑖+1⁄ , 𝑗𝑖𝑘𝑎 𝑥𝑖 ∈ 𝐸  

0,        𝑗𝑖𝑘𝑎  𝑥𝑖 ∉ 𝐸 .
 

 
 

Untuk sebarang partisi 𝛿(𝑥) − 𝑓𝑖𝑛𝑒 pada [0,1] berlaku 
 

|∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − 0

𝑘

𝑖=1

| = |∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)

𝑘

𝑖=1

| 

 

= |∑ 𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) + ∑ 𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)

𝑘

𝑥𝑖∉𝐸 

𝑘

𝑥𝑖∈𝐸

| 

 

≤ |∑ 𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)

𝑘

𝑥𝑖∈𝐸

| + |∑ 𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)

𝑘

𝑥𝑖∉𝐸

| 

 

= |∑ 1 (𝑥𝑖 − 𝑥𝑖−1)

𝑘

𝑥𝑖∈𝐸

| + |∑ 0 (𝑥𝑖 − 𝑥𝑖−1)

𝑘

𝑥𝑖∉𝐸

| 

 

= |∑(𝑥𝑖 − 𝑥𝑖−1)

𝑘

𝑥𝑖∈𝐸

| + 0 

 

= |∑(𝑥𝑖 − 𝑥𝑖−1)

𝑘

𝑥𝑖∈𝐸

| 

 

< ∑ 𝛿(𝑥𝑖) <

𝑘

𝑥𝑖∈𝐸

∑ 𝜀
2𝑖+1⁄

𝑘

𝑥𝑖∈𝐸

 

 

= 𝜀 ∑ 1
2𝑖+1⁄

𝑘

𝑥𝑖∈𝐸

=
1

2
𝜀 ∑ 1

2𝑖⁄

𝑘

𝑥𝑖∈𝐸

 

 
=
1

2
𝜀 . 1 =

1

2
𝜀 < 𝜀 . 

 

Dengan kata lain, terbukti bahwa 𝑓(𝑥) terintegral Henstock pada [0,1] dan ∫ 𝑓(𝑥) = 0
1

0
. 

 
 

 
Hasil dan Pembahasan 

 

Berikut diberikan definisi integral Henstock Sekuensial, agar mudah dalam memahaminya dapat dilihat 
kembali definisi tentang partisi yang telah diberikan sebelumnya. 
 

Definisi 3.1 (Paxton, 2016:9) Fungsi 𝑓: 𝐼 = [𝑎, 𝑏] → ℝ dikatakan terintegral Henstock Sekuensial pada 
𝐼 apabila terdapat bilangan positif 𝐴 dan suatu barisan fungsi positif  {𝛿𝑛(𝑥)}𝑛=1

∞  sehingga untuk 
setiap 𝑃𝑛 yang merupakan partisi tag 𝛿𝑛(𝑥)-fine, berlaku 
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|∑𝑓(𝑡𝑖)𝑛(𝑥𝑖 − 𝑥𝑖−1)𝑛 − 𝐴

𝑘

𝑖=1

| < 𝜀, 

 
atau dapat ditulis 
 

|𝑆(𝑓, 𝑃𝑛) − 𝐴| < 𝜀. 
 

Bilangan 𝐴 disebut nilai integral Henstock Sekuensial fungsi 𝑓 pada 𝐼 dengan 𝐴 = ∫ 𝑓
𝑏

𝑎
, kemudian 

fungsi 𝑓 terintegral Henstock Sekuensial pada 𝐼, dapat ditulis: 𝑓 ∈ 𝐻∗(𝐼). 
 

Berikut akan diberikan contoh fungsi terintegral Henstock Sekuensial, agar dapat memberi gambaran 
tentang definisi integral Henstock Sekuensial. 
 

Contoh 3.2. (Paxton, 2016:9) Diberikan fungsi Dirichlet, ∀𝑥 ∈ [0,1] didefinisikan 
 

𝑓(𝑥) = {
 1,    𝑥 ∈ ℚ 
0,   𝑥 ∉ ℚ

 

 

Akan dibuktikan bahwa fungsi 𝑓 terintegral Henstock Sekuensial pada [0,1] dan ∫ 𝑓(𝑥) = 0
1

0
. 

 
Penjelasan: 

Didefinisikan keluarga bilangan rasional {𝑞𝑚} untuk setiap 𝑚 ∈ ℕ. 
Ambil sebarang bilangan 𝜀 > 0, dan {𝛿𝑛(𝑥)}𝑛=1

∞  merupakan fungsi gauge yang turun pada [0,1] 

artinya 𝛿𝑛+1(𝑥) < 𝛿𝑛(𝑥), ∀𝑥 ∈ 𝐼 akibatnya, untuk setiap 𝑡𝑖 ∈ 𝐼𝑖, dengan 𝐼𝑖 = [𝑥𝑖−1 − 𝑥𝑖], 𝑖 =
1, 2, 3, … , 𝑘  , dan 𝑃𝑛 = {([𝑥𝑖−1 − 𝑥𝑖], 𝑡𝑖)}𝑖=1

𝑘  yang merupakan partisi 𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒 juga turun, 

didefinisikan 𝐼𝑖 

𝐼𝑖 ⊆ [𝑡𝑖 −
1

2
𝛿𝑛(𝑡𝑖), 𝑡𝑖 +

1

2
𝛿𝑛(𝑡𝑖)] , ∀𝑖 = 1, 2, 3, … , 𝑘. 

 

Jika 𝑡 merupakan titik tag, maka kita dapat memilih 𝑁 yang cukup besar dari barisan fungsi gauge 
tadi, dan didefinisikan: 

𝛿𝑁(𝑡) = {

𝜀

2𝑚
,        𝑗𝑖𝑘𝑎 𝑡 = 𝑞𝑚

𝑥 , 𝑗𝑖𝑘𝑎 𝑡 ∉ ℚ .
 

 

Diberikan 𝑃𝑛 merupakan partisi 𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒 pada [0,1] untuk setiap 𝑛 ≥ 𝑁. Jika 𝑡𝑖 ∈ 𝐼𝑖 dan 𝑡𝑖 ∉
ℚ, maka 𝑓(𝑡𝑖) = 0, akibatnya jumlahan Riemannya bernilai 0. Jika 𝑡𝑖 ∈ 𝐼𝑖dan 𝑡𝑖 ∈ ℚ, maka 𝑓(𝑡𝑖) =
1, perhatikan dua kondisi berikut terlebih dahulu: 
1. Jika 𝑞𝑚 merupakan tag pada interval 𝐼𝑖, maka: 

𝐼𝑖 ⊆ [𝑞𝑚 −
1

2
𝛿𝑛(𝑞𝑚), 𝑞𝑚 +

1

2
𝛿𝑛(𝑞𝑚)] 

sehingga (𝑥𝑖 − 𝑥𝑖−1) ≤  𝛿𝑛(𝑞𝑚) ≤
𝜀

2𝑚
= 𝛿𝑁(𝑡). 

2. Jika 𝑞𝑚 merupakan tag pada dua interval 𝐼𝑖 yang berurutan, maka: 

(𝑥𝑖 − 𝑥𝑖−1) + (𝑥𝑖+1 − 𝑥𝑖) ≤
𝜀

2𝑚
 ,  

karena 

𝐼𝑖 ⊆ [𝑞𝑚 −
1

2
𝛿𝑛(𝑞𝑚), 𝑞𝑚]  ⟹ 𝑥𝑖 − 𝑥𝑖−1 ≤

1

2
𝛿𝑛(𝑞𝑚), 
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dan  

𝐼𝑖 ⊆ [𝑞𝑚, 𝑞𝑚 +
1

2
𝛿𝑛(𝑞𝑚), ] ⟹ 𝑥𝑖 − 𝑥𝑖−1 ≤

1

2
𝛿𝑛(𝑞𝑚) 

maka,  

𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) ≤  
𝜀

2𝑚
 

sehingga, 

|𝑆(𝑓, 𝑃𝑛) − 0| = |∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − 0

∞

𝑖=1

| 

 

= |∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)

∞

𝑖=1

| 

 

≤∑
𝜀

2𝑚

∞

𝑖=1

 

 

= 𝜀∑
1

2𝑚

∞

𝑖=1

= 𝜀 . 1 = 𝜀. 

 

Dengan kata lain, terbukti bahwa 𝑓(𝑥) terintegral Henstock Sekuensial pada [0,1] dan ∫ 𝑓(𝑥) = 0
1

0
. 

 
Berikut akan ditunjukan bahwa integral Henstock ekuivalen dengan integral Henstock Sekuensial.  

 

Teorema 3.3.  (Paxton, 2016:11) Fungsi 𝑓: [𝑎, 𝑏] → ℝ terintegral Henstock pada [𝑎, 𝑏]  jika dan hanya 
jika fungsi 𝑓 terintegral Henstock Sekuensial pada [𝑎, 𝑏]. 
 
Bukti:  

Akan dibuktikan bahwa  𝑓 ∈ ℛ∗(𝐼) jika dan hanya jika 𝑓 ∈ 𝐻∗(𝐼). Asumsikan bahwa {𝛿𝑛(𝑥)}𝑛=1
∞  

adalah barisan fungsi gauge yang turun, sehingga berlaku 
 

𝛿𝑛+1(𝑥) < 𝛿𝑛(𝑥), ∀𝑥 ∈ 𝐼 
(Syarat perlu) 

Diketahui 𝑓: 𝐼 → ℝ merupakan fungsi yang terintegral Henstock, artinya untuk setiap 𝜀 > 0, terdapat 
𝛿(𝑥) > 0 sehingga untuk setiap 𝑃 yang merupakan partisi 𝛿(𝑥) − 𝑓𝑖𝑛𝑒, berlaku 
 

 |𝑆(𝑓, 𝑃) − 𝐴| < 𝜀. (3.1) 
 

Untuk setiap = 1,2,3… , diberikan 𝜀𝑛 merupakan bilangan rasional 𝜀 sehingga 0 < 𝜀 < 1. Karena 
fungsi f terintegral Henstock, maka terdapat 𝛿𝑛(𝑥) untuk setiap 𝜀𝑛 yang memenuhi 
 

|𝑆(𝑓, 𝑃) − 𝐴| < 𝜀 . 
 

Jika ℚ adalah himpunan bilangan rasional yang terhitung, maka {𝛿𝑁(𝑥)}𝑛=1
∞  adalah barisan. Untuk 

setiap 𝜀 > 0, terdapat 𝛿𝑁(𝑥) ∈ {𝛿𝑛(𝑥)}𝑛=1
∞  sehingga untuk setiap 𝑛 ≥ 𝑁 dan 𝑃𝑛 yang merupakan 

barisan partisi 𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒 pada 𝐼, berlaku 
 

|𝑆(𝑓, 𝑃𝑛) − 𝐴| < 𝜀. 
 

Jadi, dengan kata lain terbukti bahwa 𝑓 ∈ 𝐻∗(𝐼). 
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(Syarat cukup) 

Diketahui 𝑓: 𝐼 → ℝ merupakan fungsi yang terintegral Henstock Sekuensial, artinya, untuk setiap 𝜀 >
0 terdapat barisan fungsi gauge {𝛿𝑛(𝑥)}𝑛=1

∞  sehingga untuk setiap 𝑃𝑛 yang merupakan barisan partisi 

𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒 pada 𝐼, berlaku 

|𝑆(𝑓, 𝑃𝑛) − 𝐴| <
1

𝑛
 . 

 

Diberikan 𝜆 > 0, dipilih 𝛿𝑁(𝑥) ∈ {𝛿𝑛(𝑥)}𝑛=1
∞  sehingga untuk setiap 𝛿(𝑥) > 0, berlaku  

 

|𝛿(𝑥) − 𝛿𝑁(𝑥)| < 𝜆  ∀𝑥 ∈ 𝐼 
 

Jika diberikan 𝜆 → 0, maka 𝛿𝑁(𝑥) menjamin bahwa 𝑃𝑁 merupakan partisi 𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒dan juga 
merupakan partisi 𝛿(𝑥) − 𝑓𝑖𝑛𝑒, sehingga untuk 𝑃 yang merupakan partisi 𝛿(𝑥) − 𝑓𝑖𝑛𝑒, kita dapat 
membentuk jumlahan Riemann untuk 𝑃 &𝑃𝑁 secara acak, sehingga 
 

|𝑆(𝑓, 𝑃) − 𝑆(𝑓, 𝑃𝑁)| <
𝜀

2
 . 

 

Selanjutnya, untuk setiap 𝜀 > 0, terdapat 𝛿(𝑥) sehingga dapat ditemukan 𝛿𝑁(𝑥) yang memenuhi 
 

|𝛿(𝑥) − 𝛿𝑁(𝑥)| < 𝜆  ∀𝑥 ∈ 𝐼, 
 

dan barisan {𝛿𝑛(𝑥)}𝑛=1
∞  merupakan barisan turun dimana 𝑛 ≥ 𝑁∗, ∀ 𝑁∗ ∈ ℕ sehingga 

1

𝑁∗
<

𝜀

2
. untuk 

setiap 𝑃 yang merupakan partisi 𝛿(𝑥) − 𝑓𝑖𝑛𝑒 berlaku 
 
 

|𝑆(𝑓, 𝑃) − 𝐴| = |𝑆(𝑓, 𝑃) − 𝑆(𝑓, 𝑃𝑁∗) + 𝑆(𝑓, 𝑃𝑁∗) − 𝐴| 
 ≤ |𝑆(𝑓, 𝑃) − 𝑆(𝑓, 𝑃𝑁∗)| + |𝑆(𝑓, 𝑃𝑁∗) − 𝐴| 
 

<
𝜀

2
+
1

𝑁∗
<
𝜀

2
+
𝜀

2
= 𝜀 . ∎ 

 
Teorema diatas secara tidak langsung mengatakan bahwa semua sifat-sifat dan teorema yang berlaku 

pada integral Henstock berlaku pula di integral Henstock Sekuensial. Berikut akan dibuktikan beberapa 
sifat yang telah berlaku di integral Henstock berlaku pula di integral Henstock Sekuensial. Diantaranya, 
apabila diberikan fungsi non negative maka nilai integral Henstock Sekuensial dari fungsi tersebut juga 
bernilai non negative. Selain itu pula nilai integral Henstock Sekuensial dari perkalian scalar dan suatu 
fungsi sama dengan scalar tersebut dikalikan dengan nilai dari integral Henstock sekuensial fungsi 
tersebut. 
 
 

Teorema 3.4. (Paxton, 2016:15) Diberikan 𝑓, 𝑔 ∶ 𝐼 → ℝ merupakan fungsi-fungsi yang terintegral 
Henstock Sekuensial pada 𝐼 = [𝑎, 𝑏] ⊂ ℝ , 𝑑𝑎𝑛 𝑐 ∈ ℝ. 

i) Jika 𝑓 ≥ 0 pada 𝐼 maka ∫ 𝑓
𝐼

≥ 0. 

ii) 𝑐𝑓 terintegral Henstock Sekuensial pada 𝐼 dan ∫ 𝑐𝑓 = 𝑐 ∫ 𝑓
𝐼

.
𝐼

 

iii)  Jika 𝑓 + 𝑔 terintegral Henstock Sekuensial pada 𝐼 maka ∫ (𝑓 + 𝑔)
𝐼

= ∫ 𝑓
𝐼

+ ∫ 𝑔
𝐼

. 

iv) Jika 𝑓(𝑥) ≤ 𝑔(𝑥), ∀𝑥 ∈ 𝐼, maka ∫ 𝑓
𝐼

≤ ∫ 𝑔.
𝐼
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Bukti:  

i) Diberikan 𝑓 ≥ 0 dan 𝑓 ∈ 𝐻∗(𝐼), maka untuk setiap 𝜀 > 0, terdapat 

𝛿𝑁(𝑥) ∈ {𝛿𝑛(𝑥)}𝑛=1
∞  sehingga untuk setiap 𝑛 ≥ 𝑁 dan 𝑃𝑛 yang merupakan partisi 𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒, 

berlaku 

|𝑆(𝑓, 𝑃𝑛) − ∫ 𝑓
𝐼

| ≤ 𝜀. 

Artinya, 

|∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − ∫ 𝑓
𝐼

𝑘

𝑖=1

| ≤ 𝜀 

sehingga, 

−𝜀 ≤∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − ∫ 𝑓
𝐼

𝑘

𝑖=1

≤ 𝜀 

 ∫ 𝑓
𝐼

− 𝜀 ≤ ∑ 𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) ≤ 𝜀 + ∫ 𝑓
𝐼

𝑘
𝑖=1 , (3.2) 

 

dengan 𝑓(𝑡𝑖) ≥ 0, untuk setiap 𝑡𝑖 ∈ 𝑃𝑛 dan (𝑥𝑖 − 𝑥𝑖−1) ≥ 0, maka diperoleh 
 

0 ≤∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) = 𝑆(𝑓,

𝑘

𝑖=1

𝑃𝑛), 

 
sehingga jika dikombinasikan dengan (3.2) menjadi 
 

0 ≤ 𝑆(𝑓, 𝑃𝑛) ≤ ∫ 𝑓
𝐼

+ 𝜀    ∀𝑛 ≥ 𝑁. 

 

Jadi, dapat disimpulkan bahwa untuk setiap 𝜀 > 0 berlaku ∫ 𝑓
𝐼

≥ 0.  
 

ii) Diberikan 𝑓 ∈ 𝐻∗(𝐼), artinya untuk setiap 𝜀 > 0, terdapat 

𝛿𝑁(𝑥) ∈ {𝛿𝑛(𝑥)}𝑛=1
∞  sehingga untuk setiap 𝑛 ≥ 𝑁 dan 𝑃𝑛 yang merupakan partisi 𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒 

berlaku 

|𝑆(𝑓, 𝑃𝑛) − ∫ 𝑓
𝐼

| ≤
𝜀

|𝑐|
 , 

 

Sehingga untuk setiap 𝑛 ≥ 𝑁 berlaku 
 

|𝑆(𝑐𝑓, 𝑃𝑛) − 𝑐 ∫ 𝑓
𝐼

| = |∑𝑐𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − 𝑐 ∫ 𝑓
𝐼

𝑘

𝑖=1

| 

 

= |𝑐 (∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − ∫ 𝑓
𝐼

𝑘

𝑖=1

)| 

 

= |𝑐| |∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − ∫ 𝑓
𝐼

𝑘

𝑖=1

| 

 
= |𝑐| |𝑆(𝑓, 𝑃𝑛) − ∫ 𝑓

𝐼

| 
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< |𝑐|

𝜀

|𝑐|
= 𝜀, 

 

sehingga 𝑐𝑓 ∈ 𝐻∗(𝐼) dan ∫ 𝑐𝑓 = 𝑐 ∫ 𝑓
𝐼𝐼

.  
 

iii) Ambil sebarang 𝜀 > 0, karena 𝑓 ∈ 𝐻∗(𝐼) maka terdapat 𝛿𝑀(𝑥) ∈ {𝛿𝑚(𝑥)}𝑚=1
∞  sehingga untuk 

setiap 𝑚 ≥ 𝑀 ∈ ℕ dan 𝑃𝑚 yang merupakan partisi 𝛿𝑚(𝑥) − 𝑓𝑖𝑛𝑒, berlaku: 

|𝑆(𝑓, 𝑃𝑚) − ∫ 𝑓
𝐼

| <
𝜀

2
 , 

 

dan karena 𝑔 ∈ 𝐻∗(𝐼), maka terdapat 𝛿𝐾(𝑥) ∈ {𝛿𝑘(𝑥)}𝑘=1
∞  sehingga untuk setiap 𝑘 ≥ 𝑀 ∈ ℕ dan 

𝑃𝑘 yang merupakan partisi𝛿𝑘(𝑥) − 𝑓𝑖𝑛𝑒, berlaku: 
 

|𝑆(𝑔, 𝑃𝑘) − ∫ 𝑓
𝐼

| <
𝜀

2
 . 

 

Selanjutnya, untuk setiap 𝛿𝑚(𝑥) ∈ {𝛿𝑚(𝑥)}𝑚=1
∞  dan 𝛿𝑘(𝑥) ∈ {𝛿𝑘(𝑥)}𝑘=1

∞ , dipilih 𝛿𝑛(𝑥) =
min{𝛿𝑚(𝑥), 𝛿𝑘(𝑥)} dengan 𝑛,𝑚, 𝑘 = 1,2,3…∀𝑥 ∈ 𝐼. Jelas, 𝛿𝑛(𝑥) merupakan barisan fungsi gauge 

pada 𝐼. Jika 𝑃𝑛 merupakan partisi 𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒, maka 𝑃𝑛 merupakan partisi 𝛿𝑚(𝑥) − 𝑓𝑖𝑛𝑒 dan 
𝑃𝑛 juga merupakan partisi 𝛿𝑘(𝑥) − 𝑓𝑖𝑛𝑒. 
 

Perhatikan bahwa untuk setiap 𝜀 > 0, terdapat 𝛿𝑁(𝑥) ∈ {𝛿𝑛(𝑥)}𝑛=1
∞  sehingga untuk setiap 𝑛 ≥ 𝑁 

dan 𝑃𝑛 yang merupakan partisi 𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒 𝑃𝑛, berlaku 
 

|𝑆(𝑓 + 𝑔, 𝑃𝑛) − (∫ 𝑓
𝐼

∫ 𝑔
𝐼

)| 
 

= |∑(𝑓 + 𝑔)(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)

𝑘

𝑖=1

− (∫ 𝑓
𝐼

∫ 𝑔
𝐼

)| 

= |∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − ∫ 𝑓
𝐼

+∑𝑔(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − ∫ 𝑔
𝐼

𝑘

𝑖=1

𝑘

𝑖=1

| 

≤ |∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − ∫ 𝑓
𝐼

𝑘

𝑖=1

| + |∑𝑔(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) − ∫ 𝑔
𝐼

𝑘

𝑖=1

| 

<
𝜀

2
+
𝜀

2
= 𝜀, 

 

sehingga, 𝑓 + 𝑔 ∈ 𝐻∗(𝐼) dan ∫ 𝑓 + 𝑔 =
𝐼

∫ 𝑓
𝐼

+ ∫ 𝑔.
𝐼

 

 

iv) Diketahui 𝑓, 𝑔 ∈ 𝐻∗(𝐼) dan 𝑓(𝑥) ≤ 𝑔(𝑥) ∀𝑥 ∈ 𝐼. Diberikan ℎ = 𝑔 − 𝑓 ≥ 0 berdasarkan Teorema 
3.3. bagian iii) maka berlaku  
 

ℎ = 𝑔 − 𝑓 ∈ 𝐻∗(𝐼) 
 
dan 

∫ (𝑔 − 𝑓) = ∫ 𝑔
𝐼

+∫ −𝑓
𝐼

= ∫ 𝑔
𝐼

−∫ 𝑓
𝐼𝐼
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Selanjutnya, berdasarkan Teorema 3.3. bagian i), ∫ ℎ
𝐼

≥ 0, sehingga  
 

0 ≤ ∫ ℎ
𝐼

= ∫ (𝑔 − 𝑓) = ∫ 𝑔
𝐼

−∫ 𝑓
𝐼

,
𝐼

 

artinya,  

0 ≤ ∫ 𝑔
𝐼

−∫ 𝑓
𝐼

, 

sehingga, 

∫ 𝑓
𝐼

≤ ∫ 𝑔.
𝐼

  

 
Berikut akan diberikan sifat penambahan interval yang menyatakan bahwa “Apabila suatu fungsi 

terintegral Henstock Sekuensial pada dua subinterval tertutup yang dimuat oleh suatu interval tertutup, 
maka fungsi tersebut juga terintegral Henstock Sekuensial pada interval tertutup tersebut, dan nilai 
integral dari fungsi yang terintegral Henstock Sekuensial pada interval tertutup tersebut merupakan 
penjumlahan dari nilai integral fungsi yang terintegral Henstock Sekuensial pada dua subinterval 
tersebut. 

 

Teorema 3.5. (Paxton, 2016:18) Diberikan fungsi 𝑓: [𝑎, 𝑏] → ℝ  dan 𝑐 ∈ (𝑎, 𝑏). Jika fungsi 𝑓 merupakan 
fungsi yang terintegral Henstock Sekuensial pada [𝑎, 𝑐] 𝑑𝑎𝑛 [𝑐, 𝑏], maka fungsi 𝑓 terintegral Henstock 

Sekuensial pada [𝑎, 𝑏] dan 
 

∫ 𝑓
𝑏

𝑎

= ∫ 𝑓
𝑐

𝑎

+∫ 𝑓
𝑏

𝑐

. 

 
Bukti: 

Ambil sebarang 𝜀 > 0, karena 𝑓 ∈ 𝐻∗([𝑎, 𝑐]) maka terdapat 𝛿𝑀(𝑥) ∈ {𝛿𝑚(𝑥)}𝑚=1
∞  sehingga untuk 

setiap 𝑚 ≥ 𝑀 ∈ ℕ dan 𝑃𝑚 yang merupakan partisi 𝛿𝑚(𝑥) − 𝑓𝑖𝑛𝑒, berlaku 
 

|𝑆(𝑓, 𝑃𝑚) − ∫ 𝑓
𝑐

𝑎

| <
𝜀

2
 , 

 

dan juga karena 𝑓 ∈ 𝐻∗([𝑐, 𝑏]), maka terdapat 𝛿𝐾(𝑥) ∈ {𝛿𝑘(𝑥)}𝑘=1
∞  sehingga untuk setiap 𝑘 ≥ 𝐾 ∈ ℕ 

dan 𝑃𝑘 yang merupakan partisi𝛿𝑘(𝑥) − 𝑓𝑖𝑛𝑒, berlaku  
 

|𝑆(𝑓, 𝑃𝑘) − ∫ 𝑓
𝑏

𝑐

| <
𝜀

2
 . 

 

Didefinisikan gauge 𝛿𝑁(𝑥) ∈ {𝛿𝑛(𝑥)}𝑛=1
∞  sehingga untuk setiap 𝑛 ≥ 𝑁 ∈ ℕ dan 𝑃𝑛 yang merupakan 

partisi𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒, setiap partisi 𝑃𝑛 dapat dipecahkan menjadi: 
 
 

𝛿𝑁(𝑡) 

=

{
 
 

 
 min {𝛿𝑚(𝑡),

1

2
(𝑐 − 𝑡)} ,

min    { 𝛿𝑚(𝑐), 𝛿𝑘(𝑐)},

min {𝛿𝑘(𝑡),
1

2
(𝑡 − 𝑐)} ,

 

𝑡 ∈ [𝑎, 𝑐) 
 

𝑡 = 𝑐 
 

𝑡 ∈ (𝑐, 𝑏] 

 

untuk 𝑚 ≥ 𝑀 dan 𝑘 ≥ 𝐾. 
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Diberikan 𝑃𝑛 merupakan partisi 𝛿𝑛(𝑥)-fine, untuk setiap 𝑛 ≥ 𝑁, karena 𝑃𝑚 merupakan barisan 

partisi pada [𝑎, 𝑐] yang terdiri atas 𝑃𝑛 ∩ [𝑎, 𝑐], dan  𝑃𝑘 merupakan barisan partisi pada [𝑐, 𝑏] yang 
terdiri atas 𝑃𝑛 ∩ [𝑐, 𝑏] dengan 𝑛,𝑚, 𝑘 = 1,2,3…  maka diperoleh 

 

𝑆(𝑓, 𝑃𝑛) = 𝑆(𝑓, 𝑃𝑚) + 𝑆(𝑓, 𝑃𝑘). 
 

Untuk setiap 𝜀 > 0, terdapat 𝛿𝑁(𝑥) ∈ {𝛿𝑛(𝑥)}𝑛=1
∞  sehingga untuk setiap 𝑛 ≥ 𝑁 berlaku 

 

|𝑆(𝑓, 𝑃𝑛) − (∫ 𝑓 +
𝑐

𝑎

∫ 𝑓
𝑏

𝑐

)| 
= |∑𝑓(

𝑗

𝑖=1

𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)𝑛 − (∫ 𝑓 +
𝑐

𝑎

∫ 𝑓
𝑏

𝑐

)| 

 

= |∑𝑓(

𝑝

𝑖=1

𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)𝑚∑𝑓(

𝑗

𝑖=𝑝

𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)𝑘 − (∫ 𝑓 +
𝑐

𝑎

∫ 𝑓
𝑏

𝑐

)| 

 
= |𝑆(𝑓, 𝑃𝑚) − ∫ 𝑓 +

𝑐

𝑎

𝑆(𝑓, 𝑃𝑘) − ∫ 𝑓
𝑏

𝑐

| 

 
≤ |𝑆(𝑓, 𝑃𝑚) − ∫ 𝑓

𝑐

𝑎

| + |𝑆(𝑓, 𝑃𝑘) − ∫ 𝑓
𝑏

𝑐

| 

 
<
𝜀

2
+
𝜀

2
= 𝜀. 

Sehingga, terbukti bahwa 𝑓 ∈ 𝐻∗([𝑎, 𝑏]) dan ∫ 𝑓
𝑏

𝑎
= ∫ 𝑓

𝑐

𝑎
+ ∫ 𝑓

𝑏

𝑐
. ∎ 

 
Berikut akan diberikan sifat yang menyatakan bahwa “Apabila suatu fungsi terintegral Henstock 

pada suatu interval, maka fungsi tersebut juga terintegral Henstock Sekuensial pada setiap 
subintervalnya. 

 

Teorema 3.6. (Paxton, 2016:19) Diberikan 𝑓: 𝐼 ⊆ ℝ → ℝ. Jika 𝑓 ∈ 𝐻∗(𝐼), maka 𝑓 ∈ 𝐻∗(𝐼𝑖) dengan 
𝑖 = 1,2,3, … 𝑘 ∈ ℕ 
 
Bukti: 

Akan dibuktikan bahwa 𝑓 ∈ 𝐻∗(𝐼𝑖) artinya fungsi 𝑓 terintegral Henstock Sekuensial pada setiap 

subinterval 𝐼𝑖  , ∀𝑖 = 1,2,3, … 𝑘 ∈ ℕ dengan menggunakan induksi matematika. 

Pertama, akan dibuktikan benar untuk 𝑘 = 2. Diberikan 𝜀 > 0, maka terdapat 𝛿𝑁(𝑥) ∈ {𝛿𝑛(𝑥)}𝑛=1
∞  

sehingga untuk setiap 𝑛 ≥ 𝑁 dan  𝑃𝑛 = {(𝐼𝑖 , 𝑡𝑖)}𝑖=1
𝑘  yang merupakan partisi 𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒 pada 𝐼, 

berlaku 
 

|𝑆(𝑓, 𝑃𝑛) − ∫ 𝑓
𝐼

| <
𝜀

2
 . 

 

Selanjutnya, diberikan interval 𝐼1  dan 𝐼2 dengan 𝐼1 ∩ 𝐼2 ≠ ∅ dan 𝐼1 ∪ 𝐼2 = 𝐼. Diberikan pula 𝛿1𝑛(𝑥) 
dan 𝛿2𝑛(𝑥) berturut-turut merupakan gauge pada 𝐼1  dan 𝐼2, sehingga untuk sebarang 𝑃1𝑛 yang 
merupakan partisi 𝛿1𝑛(𝑥) − 𝑓𝑖𝑛𝑒 dan 𝑃2𝑛 yang merupakan partisi 𝛿2𝑛(𝑥) − 𝑓𝑖𝑛𝑒 berlaku 

 

𝑆(𝑓, 𝑃𝑛) =∑𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)𝑛

2

𝑖=1

 

 = 𝑓(𝑡1)(𝑥1 − 𝑥0)𝑛 + 𝑓(𝑡2)(𝑥2 − 𝑥1)𝑛 
 = 𝑆(𝑓, 𝑃1𝑛) + 𝑆(𝑓, 𝑃2𝑛). 
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Perhatikan bahwa jika 𝑄16 merupakan partisi 𝛿1𝑛(𝑥) − 𝑓𝑖𝑛𝑒 dan 𝑃2𝑛 merupakan partisi 𝛿2𝑛(𝑥) −
𝑓𝑖𝑛𝑒 maka 𝑅𝑛 = 𝑄1𝑛 ∪ 𝑃2𝑛 merupakan partisi 𝛿𝑛(𝑥) − 𝑓𝑖𝑛𝑒, untuk setiap 𝑛 = 1,2,3…. Selanjutnya 

diberikan 𝜀 > 0, maka terdapat 𝛿𝑁(𝑥) ∈ {𝛿𝑛(𝑥)}𝑛=1
∞  sehingga untuk setiap 𝑛 ≥ 𝑁 dan 𝑃1𝑛, 𝑄1𝑛 

merupakan partisi 𝛿1𝑛(𝑥) − 𝑓𝑖𝑛𝑒 pada 𝐼, berlaku 
 

|𝑆(𝑓, 𝑃1𝑛) − 𝑆(𝑓, 𝑄1𝑛)| 

= |𝑆(𝑓, 𝑃1𝑛) − 𝑆(𝑓, 𝑄1𝑛) + 𝑆(𝑓, 𝑃2𝑛) − 𝑆(𝑓, 𝑃2𝑛) + ∫ 𝑓
𝐼

−∫ 𝑓
𝐼

| 

≤ |𝑆(𝑓, 𝑃1𝑛) + 𝑆(𝑓, 𝑃2𝑛) − ∫ 𝑓
𝐼

| + |𝑆(𝑓, 𝑄1𝑛) + 𝑆(𝑓, 𝑃2𝑛) − ∫ 𝑓
𝐼

| 

= |𝑆(𝑓, 𝑃𝑛) − ∫ 𝑓
𝐼

| + |𝑆(𝑓, 𝑅𝑛)∫ 𝑓
𝐼

| 

≤
𝜀

2
+
𝜀

2
= 𝜀 . 

 

Selanjutnya, diasumsikan benar untuk 𝑘 = 𝑙, sehingga akan dibuktikan benar untuk 𝑘 = 𝑙 + 1. 
Diberikan sebarang 𝜀 > 0, maka terdapat 𝛿𝑁(𝑥) ∈ {𝛿𝑛(𝑥)}𝑛=1

∞  sehingga untuk setiap 𝑛 ≥ 𝑁 dan 

𝑃(𝑙+1)𝑛 , 𝑄(𝑙+1)𝑛 yang merupakan partisi 𝛿(𝑙+1)𝑛 − 𝑓𝑖𝑛𝑒 pada 𝐼(𝑙+1), berlaku 
 

|𝑆(𝑓, 𝑃(𝑙+1)𝑛) − 𝑆(𝑓, 𝑄(𝑙+1)𝑛)| 

≤ |𝑆(𝑓, 𝑃(𝑙+1)𝑛) + [𝑆(𝑓, 𝑃1𝑛) + 𝑆(𝑓, 𝑃2𝑛) + ⋯+ 𝑆(𝑓, 𝑃𝑙𝑛] − ∫ 𝑓
𝐼

|

+ |𝑆(𝑓, 𝑄(𝑙+1)𝑛 + [𝑆(𝑓, 𝑃1𝑛) + 𝑆(𝑓, 𝑃2𝑛) + ⋯+ 𝑆(𝑓, 𝑃𝑙𝑛)] − ∫ 𝑓
𝐼

| 

= |𝑆(𝑓, 𝑃𝑛) − ∫ 𝑓
𝐼

| + |𝑆(𝑓, 𝑅𝑛)∫ 𝑓
𝐼

| 

≤
𝜀

2
+
𝜀

2
= 𝜀 , 

 

sehingga terbukti bahwa fungsi 𝑓 ∈ 𝐻∗(𝐼𝑖) dengan𝑖 = 1,2,3, … 𝑘 ∈ ℕ.∎ 
 

 
 

Kesimpulan 

 

Pendefinisian Integral Henstock Sekuensial hampir sama seperti mendefinisikan integral Henstock, 
bedanya pada integral Henstock Sekuensial partisinya melibatkan barisan fungsi positif yang disebut 
partisi tag δ δ . Sifat-sifat yang berlaku pada integral Henstock berlaku pula pada integral Henstock 
Sekuensial, beberapa diantaranya berikut ini. Apabila suatu fungsi terintegral Henstock Sekuensial pada 
dua subinterval tertutup yang dimuat oleh suatu interval tertutup, maka fungsi tersebut juga terintegral 
Henstock Sekuensial pada interval tertutup tersebut, dan nilai integral dari fungsi yang terintegral 
Henstock Sekuensial pada interval tertutup tersebut merupakan penjumlahan dari nilai integral fungsi 
yang terintegral Henstock Sekuensial pada dua subinterval tersebut. Selanjutnya apabila suatu fungsi 
terintegral Henstock pada suatu interval, maka fungsi tersebut juga terintegral Henstock Sekuensial 
pada setiap subintervalnya. Selain itu, apabila diberikan fungsi non negative maka nilai integral 
Henstock Sekuensial dari fungsi tersebut juga bernilai non negative. Sifat lainnya mengatakan bahwa 
nilai integral Henstock Sekuensial dari perkalian scalar dan suatu fungsi sama dengan scalar tersebut 
dikalikan dengan nilai dari integral Henstock sekuensial fungsi tersebut. 
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